Skip to main content

Advertisement

Log in

Calreticulin as a marker and therapeutic target for cancer

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

BC:

Breast cancer

CRT:

Calreticulin

ecto-CRT:

Plasma membrane surface calreticulin

ER:

Endoplasmic reticulum

EMT:

Epithelial-mesenchymal transition

EC:

Esophageal cancer

ICD:

Immunogenic cell death

IFN:

Type I interferon

JAK2:

Janus kinase 2

MPNs:

Myeloproliferative neoplasms

MPL:

Myeloproliferative leukemia protein

NPC:

Nasopharyngeal carcinoma

PCR:

Polymerase chain reaction

References

  1. Fucikova J, et al. Calreticulin and cancer. Cell Res. 2021;31(1):5–16.

    Article  CAS  PubMed  Google Scholar 

  2. Li Y, et al. Bioinformatics analysis for the role of CALR in human cancers. PLoS ONE. 2021;16(12): e0261254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ostwald TJ, MacLennan DH. Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J Biol Chem. 1974;249(3):974–9.

    Article  CAS  PubMed  Google Scholar 

  4. McCauliffe DP, et al. The 5’-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem. 1992;267(4):2557–62.

    Article  CAS  PubMed  Google Scholar 

  5. Michalak M, et al. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J. 2009;417(3):651–66.

    Article  CAS  PubMed  Google Scholar 

  6. Opas M, et al. Regulation of expression and intracellular distribution of calreticulin, a major calcium binding protein of nonmuscle cells. J Cell Physiol. 1991;149(1):160–71.

    Article  CAS  PubMed  Google Scholar 

  7. Smith MJ, Koch GL. Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. EMBO J. 1989;8(12):3581–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Michalak M, et al. Calreticulin: one protein, one gene, many functions. Biochem J. 1999;344(Pt 2):281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakamura K, et al. Functional specialization of calreticulin domains. J Cell Biol. 2001;154(5):961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burns K, et al. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 1994;4(5):152–4.

    Article  CAS  PubMed  Google Scholar 

  11. Pike SE, et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood. 1999;94(7):2461–8.

    Article  CAS  PubMed  Google Scholar 

  12. Goicoechea S, et al. The anti-adhesive activity of thrombospondin is mediated by the N-terminal domain of cell surface calreticulin. J Biol Chem. 2002;277(40):37219–28.

    Article  CAS  PubMed  Google Scholar 

  13. Coppolino MG, Dedhar S. Calreticulin. Int J Biochem Cell Biol. 1998;30(5):553–8.

    Article  CAS  PubMed  Google Scholar 

  14. Baksh S, Michalak M. Expression of calreticulin in Escherichia coli and identification of its Ca2+ binding domains. J Biol Chem. 1991;266(32):21458–65.

    Article  CAS  PubMed  Google Scholar 

  15. Michalak M, et al. Calreticulin. Biochem J. 1992;285(Pt 3):681–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breier A, Michalak M. 2,4,6-Trinitrobenzenesulfonic acid modification of the carboxyl-terminal region (C-domain) of calreticulin. Mol Cell Biochem. 1994;130(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  17. Sonnichsen B, et al. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J Cell Sci. 1994;107(Pt 10):2705–17.

    Article  PubMed  Google Scholar 

  18. Wijeyesakere SJ, et al. The C-Terminal Acidic Region of Calreticulin Mediates Phosphatidylserine Binding and Apoptotic Cell Phagocytosis. J Immunol. 2016;196(9):3896–909.

    Article  CAS  PubMed  Google Scholar 

  19. John LM, Lechleiter JD, Camacho P. Differential modulation of SERCA2 isoforms by calreticulin. J Cell Biol. 1998;142(4):963–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Milner RE, et al. Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J Biol Chem. 1991;266(11):7155–65.

    Article  CAS  PubMed  Google Scholar 

  21. Mesaeli N, et al. Calreticulin is essential for cardiac development. J Cell Biol. 1999;144(5):857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faustino RS, et al. Calreticulin secures calcium-dependent nuclear pore competency required for cardiogenesis. J Mol Cell Cardiol. 2016;92:63–74.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson S, et al. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 2001;11(3):122–9.

    Article  CAS  PubMed  Google Scholar 

  24. Raghavan M, et al. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013;34(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  25. Lu YC, Weng WC, Lee H. Functional roles of calreticulin in cancer biology. Biomed Res Int. 2015;2015: 526524.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Panaretakis T, et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009;28(5):578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scorrano L, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. 2003;300(5616):135–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tufi R, et al. Reduction of endoplasmic reticulum Ca2+ levels favors plasma membrane surface exposure of calreticulin. Cell Death Differ. 2008;15(2):274–82.

    Article  CAS  PubMed  Google Scholar 

  29. Obeid M, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14(10):1848–50.

    Article  CAS  PubMed  Google Scholar 

  30. Kepp O, et al. Surface-exposed and soluble calreticulin: conflicting biomarkers for cancer prognosis. Oncoimmunology. 2020;9(1):1792037.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tesniere A, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008;15(1):3–12.

    Article  CAS  PubMed  Google Scholar 

  32. Osman R, et al. Calreticulin release at an early stage of death modulates the clearance by macrophages of apoptotic cells. Front Immunol. 2017;8:1034.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Clarke C, Smyth MJ. Calreticulin exposure increases cancer immunogenicity. Nat Biotechnol. 2007;25(2):192–3.

    Article  CAS  PubMed  Google Scholar 

  34. Ohkuro M, et al. Calreticulin and integrin alpha dissociation induces anti-inflammatory programming in animal models of inflammatory bowel disease. Nat Commun. 2018;9(1):1982.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ito H, Seyama Y, Kubota S. Calreticulin is directly involved in anti-alpha3 integrin antibody-mediated secretion and activation of matrix metalloprotease-2. Biochem Biophys Res Commun. 2001;283(2):297–302.

    Article  CAS  PubMed  Google Scholar 

  36. Iwahashi N, et al. Calreticulin Regulates Syncytialization Through Control of the Synthesis and Transportation of E-Cadherin in BeWo Cells. Endocrinology. 2019;160(2):359–74.

    CAS  PubMed  Google Scholar 

  37. Cheng WF, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001;108(5):669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chiang WF, et al. Calreticulin, an endoplasmic reticulum-resident protein, is highly expressed and essential for cell proliferation and migration in oral squamous cell carcinoma. Oral Oncol. 2013;49(6):534–41.

    Article  CAS  PubMed  Google Scholar 

  39. Klampfl T, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    Article  CAS  PubMed  Google Scholar 

  40. Nangalia J, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Belcic Mikic T, Pajic T, M. Sever, CALR mutations in a cohort of JAK2 V617F negative patients with suspected myeloproliferative neoplasm. Sci Rep. 2019;9(1):19838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Edahiro Y, Araki M, Komatsu N. Mechanism underlying the development of myeloproliferative neoplasms through mutant calreticulin. Cancer Sci. 2020;111(8):2682–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marty C, et al. Calreticulin mutants in mice induce an MPL-dependent thrombocytosis with frequent progression to myelofibrosis. Blood. 2016;127(10):1317–24.

    Article  CAS  PubMed  Google Scholar 

  44. Chachoua I, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325–35.

    Article  CAS  PubMed  Google Scholar 

  45. Pecquet C, et al. Calreticulin mutants as oncogenic rogue chaperones for TpoR and traffic-defective pathogenic TpoR mutants. Blood. 2019;133(25):2669–81.

    Article  CAS  PubMed  Google Scholar 

  46. Elf S, et al. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discov. 2016;6(4):368–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shide K, et al. Calreticulin mutant mice develop essential thrombocythemia that is ameliorated by the JAK inhibitor ruxolitinib. Leukemia. 2017;31(5):1136–44.

    Article  CAS  PubMed  Google Scholar 

  48. Lim KH, et al. Expression of CALR mutants causes mpl-dependent thrombocytosis in zebrafish. Blood Cancer J. 2016;6(10): e481.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shide K, et al. Calreticulin haploinsufficiency augments stem cell activity and is required for onset of myeloproliferative neoplasms in mice. Blood. 2020;136(1):106–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaur A, Raghavan M. A calreticulin tail: C-terminal mutants of calreticulin allow cancer cells to evade phagocytosis. Mol Cell. 2020;77(4):683–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Di Buduo CA, et al. Defective interaction of mutant calreticulin and SOCE in megakaryocytes from patients with myeloproliferative neoplasms. Blood. 2020;135(2):133–44.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liu P, et al. Secreted calreticulin mutants subvert anticancer immunosurveillance. Oncoimmunology. 2020;9(1):1708126.

    Article  PubMed  Google Scholar 

  53. Belcic Mikic T, et al. The contemporary approach to CALR-positive myeloproliferative neoplasms. Int J Mol Sci. 2021;22(7):3371.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pronier E, et al. Targeting the CALR interactome in myeloproliferative neoplasms. JCI Insight. 2018;3(22):122703.

    Article  PubMed  Google Scholar 

  55. Han L, et al. Calreticulin-mutant proteins induce megakaryocytic signaling to transform hematopoietic cells and undergo accelerated degradation and Golgi-mediated secretion. J Hematol Oncol. 2016;9(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nieborowska-Skorska M, et al. Ruxolitinib-induced defects in DNA repair cause sensitivity to PARP inhibitors in myeloproliferative neoplasms. Blood. 2017;130(26):2848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hui W, et al. Alterations of signaling pathways in essential thrombocythemia with calreticulin mutation. Cancer Manag Res. 2021;13:6231–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chao MP, et al. Calreticulin is the dominant prophagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med. 2010;2(63):63ra94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Obeid M, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  60. Fucikova J, et al. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients. Blood. 2016;128(26):3113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14(1):36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang PM, et al. Sequential interferon beta-cisplatin treatment enhances the surface exposure of calreticulin in cancer cells via an interferon regulatory factor 1-dependent manner. Biomolecules. 2020;10(4):643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vaes RDW, et al. Biomarkers of radiotherapy-induced immunogenic cell death. Cells. 2021;10(4):930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Truxova I, et al. Calreticulin exposure on malignant blasts correlates with improved natural killer cell-mediated cytotoxicity in acute myeloid leukemia patients. Haematologica. 2020;105(7):1868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Galluzzi L, Kroemer G. Calreticulin and type I interferon: An unsuspected connection. Oncoimmunology. 2017;6(3): e1288334.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chen X, et al. Calreticulin promotes immunity and type I interferon-dependent survival in mice with acute myeloid leukemia. Oncoimmunology. 2017;6(4): e1278332.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sun J, et al. Diallyl disulfide down-regulates calreticulin and promotes C/EBPalpha expression in differentiation of human leukaemia cells. J Cell Mol Med. 2019;23(1):194–204.

    Article  CAS  PubMed  Google Scholar 

  68. Wemeau M, et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 2010;1: e104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, et al. A siRNA-assisted assembly strategy to simultaneously suppress “self” and upregulate “eat-me” signals for nanoenabled chemo-immunotherapy. ACS Nano. 2021;15(10):16030–42.

    Article  CAS  PubMed  Google Scholar 

  70. Zhao J, et al. Diallyl disulfide suppresses growth of HL-60 cell through increasing histone acetylation and p21WAF1 expression in vivo and in vitro. Acta Pharmacol Sin. 2006;27(11):1459–66.

    Article  CAS  PubMed  Google Scholar 

  71. Yi L, et al. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells. Oncol Lett. 2016;12(3):1861–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tesniere A, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29(4):482–91.

    Article  CAS  PubMed  Google Scholar 

  73. Huang Y, et al. Comparison of the effects of photon, proton and carbon-ion radiation on the ecto-calreticulin exposure in various tumor cell lines. Ann Transl Med. 2019;7(20):542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zheng Y, et al. Calreticulin increases growth and progression of natural killer/T-cell lymphoma. Aging (Albany NY). 2020;12(23):23822–35.

    Article  PubMed  Google Scholar 

  75. Han A, et al. Calreticulin is a critical cell survival factor in malignant neoplasms. PLoS Biol. 2019;17(9): e3000402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pekarikova A, et al. Calreticulin is a B cell molecular target in some gastrointestinal malignancies. Clin Exp Immunol. 2010;160(2):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu YS, et al. Calreticulin nuclear translocalization alleviates CaM/CaMKII/CREB signaling pathway to enhance chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Aging (Albany NY). 2022;14(12):5097–115.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng CY, Su CC. Tanshinone IIA inhibits Hep-J5 cells by increasing calreticulin, caspase 12 and GADD153 protein expression. Int J Mol Med. 2010;26(3):379–85.

    CAS  PubMed  Google Scholar 

  79. Feng R, et al. Calreticulin down-regulation inhibits the cell growth, invasion and cell cycle progression of human hepatocellular carcinoma cells. Diagn Pathol. 2015;10:149.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Bezu L, et al. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology. 2018;7(6): e1431089.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ye J, et al. Calreticulin: a potential diagnostic and therapeutic biomarker in gallbladder cancer. Aging (Albany NY). 2021;13(4):5607–20.

    Article  CAS  PubMed  Google Scholar 

  82. Toquet C, et al. Altered Calreticulin expression in human colon cancer: maintenance of Calreticulin expression is associated with mucinous differentiation. Oncol Rep. 2007;17(5):1101–7.

    CAS  PubMed  Google Scholar 

  83. Vougas K, et al. Two-dimensional electrophoresis and immunohistochemical study of calreticulin in colorectal adenocarcinoma and mirror biopsies. J BUON. 2008;13(1):101–7.

    CAS  PubMed  Google Scholar 

  84. Chih HW, et al. Bullatacin, a potent antitumor annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2.1.5 by apoptosis induction. Life Sci. 2001;69(11):1321–31.

    Article  CAS  PubMed  Google Scholar 

  85. Fan F, et al. Bullatacin triggers immunogenic cell death of colon cancer cells by activating endoplasmic reticulum chaperones. J Inflamm (Lond). 2021;18(1):23.

    Article  CAS  PubMed  Google Scholar 

  86. Colangelo T, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7: e2108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kopecka J, et al. Nitric oxide and P-glycoprotein modulate the phagocytosis of colon cancer cells. J Cell Mol Med. 2011;15(7):1492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Du XL, et al. Calreticulin promotes cell motility and enhances resistance to anoikis through STAT3-CTTN-Akt pathway in esophageal squamous cell carcinoma. Oncogene. 2009;28(42):3714–22.

    Article  CAS  PubMed  Google Scholar 

  89. Shi F, et al. Calreticulin promotes migration and invasion of esophageal cancer cells by upregulating neuropilin-1 expression via STAT5A. Clin Cancer Res. 2014;20(23):6153–62.

    Article  CAS  PubMed  Google Scholar 

  90. Wang XM, et al. PTP1B contributes to calreticulin-induced metastatic phenotypes in esophageal squamous cell carcinoma. Mol Cancer Res. 2013;11(9):986–94.

    Article  CAS  PubMed  Google Scholar 

  91. Liu SH, et al. Honokiol confers immunogenicity by dictating calreticulin exposure, activating ER stress and inhibiting epithelial-to-mesenchymal transition. Mol Oncol. 2015;9(4):834–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kong Q, Zhang Z, Liang Z. Upregulating miR-637 aggravates endoplasmic reticulum stress-induced apoptosis in gastric cancer cells by suppressing Calreticulin. Anim Cells Syst (Seoul). 2020;24(5):267–74.

    Article  CAS  PubMed  Google Scholar 

  93. Lee PC, et al. Calreticulin regulates vascular endothelial growth factor-A mRNA stability in gastric cancer cells. PLoS ONE. 2019;14(11): e0225107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen CN, et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol. 2009;16(2):524–33.

    Article  CAS  PubMed  Google Scholar 

  95. Wang L, et al. Calreticulin enhances gastric cancer metastasis by dimethylating H3K9 in the E-cadherin promoter region mediating by G9a. Oncogenesis. 2022;11(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hong SH, et al. An autoantibody-mediated immune response to calreticulin isoforms in pancreatic cancer. Cancer Res. 2004;64(15):5504–10.

    Article  CAS  PubMed  Google Scholar 

  97. Matsukuma S, et al. Calreticulin is highly expressed in pancreatic cancer stem-like cells. Cancer Sci. 2016;107(11):1599–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sheng W, et al. Calreticulin promotes EGF-induced EMT in pancreatic cancer cells via Integrin/EGFR-ERK/MAPK signaling pathway. Cell Death Dis. 2017;8(10): e3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sheng W, et al. Calreticulin promotes EMT in pancreatic cancer via mediating Ca(2+) dependent acute and chronic endoplasmic reticulum stress. J Exp Clin Cancer Res. 2020;39(1):209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sheng W, et al. Overexpression of calreticulin contributes to the development and progression of pancreatic cancer. J Cell Physiol. 2014;229(7):887–97.

    Article  CAS  PubMed  Google Scholar 

  101. Huang X, et al. Calreticulin couples with immune checkpoints in pancreatic cancer. Clin Transl Med. 2020;10(1):36–44.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yoneda A, Minomi K, Tamura Y. Heat shock protein 47 confers chemoresistance on pancreatic cancer cells by interacting with calreticulin and IRE1alpha. Cancer Sci. 2021;112(7):2803–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zamanian M, et al. Calreticulin mediates an invasive breast cancer phenotype through the transcriptional dysregulation of p53 and MAPK pathways. Cancer Cell Int. 2016;16:56.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Cruz-Ramos E, Sandoval-Hernandez A, Tecalco-Cruz AC. Differential expression and molecular interactions of chromosome region maintenance 1 and calreticulin exportins in breast cancer cells. J Steroid Biochem Mol Biol. 2019;185:7–16.

    Article  CAS  PubMed  Google Scholar 

  105. Eric-Nikolic A, et al. Overexpression of calreticulin in malignant and benign breast tumors: relationship with humoral immunity. Oncology. 2012;82(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  106. Calvillo-Rodriguez KM, et al. PKHB1, a thrombospondin-1 peptide mimic, induces anti-tumor effect through immunogenic cell death induction in breast cancer cells. Oncoimmunology. 2022;11(1):2054305.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Eric A, et al. Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res. 2009;15(1):89–90.

    Article  CAS  PubMed  Google Scholar 

  108. He D, et al. Ecotropic virus integration-1 and calreticulin as novel prognostic markers in triple-negative breast cancer: A retrospective cohort study. Oncol Lett. 2019;18(2):1847–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lwin ZM, et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod Pathol. 2010;23(12):1559–66.

    Article  CAS  PubMed  Google Scholar 

  110. Wu L, et al. EVI1 acts as an oncogene and positively regulates calreticulin in breast cancer. Mol Med Rep. 2019;19(3):1645–53.

    CAS  PubMed  Google Scholar 

  111. Liu X, et al. HIF-1-regulated expression of calreticulin promotes breast tumorigenesis and progression through Wnt/beta-catenin pathway activation. Proc Natl Acad Sci U S A. 2021;118(44):e2109144118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu R, et al. Calreticulin as a potential diagnostic biomarker for lung cancer. Cancer Immunol Immunother. 2012;61(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  113. Gao F, et al. Calreticulin (CALR)-induced activation of NF-kB signaling pathway boosts lung cancer cell proliferation. Bioengineered. 2022;13(3):6856–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fucikova J, et al. Calreticulin expression in human non-small cell lung cancers correlates with increased accumulation of antitumor immune cells and favorable prognosis. Cancer Res. 2016;76(7):1746–56.

    Article  CAS  PubMed  Google Scholar 

  115. Wu Y, et al. Calreticulin regulates TGF-beta1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling. Int J Biochem Cell Biol. 2017;90:103–13.

    Article  CAS  PubMed  Google Scholar 

  116. Fucikova J, et al. High hydrostatic pressure induces immunogenic cell death in human tumor cells. Int J Cancer. 2014;135(5):1165–77.

    Article  CAS  PubMed  Google Scholar 

  117. Inoue H, et al. Increased plasma levels of damage-associated molecular patterns during systemic anticancer therapy in patients with advanced lung cancer. Transl Lung Cancer Res. 2021;10(6):2475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Furukawa R, et al. Cytotoxic chemotherapeutic agents and the EGFR-TKI osimertinib induce calreticulin exposure in non-small cell lung cancer. Lung Cancer. 2021;155:144–50.

    Article  CAS  PubMed  Google Scholar 

  119. Ye D, et al. LMP1 Up-regulates Calreticulin to Induce Epithelial-mesenchymal Transition via TGF-beta/Smad3/NRP1 Pathway in Nasopharyngeal Carcinoma Cells. J Cancer. 2020;11(5):1257–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Han Y, et al. High expression of calreticulin indicates poor prognosis and modulates cell migration and invasion via activating Stat3 in nasopharyngeal carcinoma. J Cancer. 2019;10(22):5460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alur M, et al. Suppressive roles of calreticulin in prostate cancer growth and metastasis. Am J Pathol. 2009;175(2):882–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhu N, et al. Calreticulin: an intracellular Ca++-binding protein abundantly expressed and regulated by androgen in prostatic epithelial cells. Endocrinology. 1998;139(10):4337–44.

    Article  CAS  PubMed  Google Scholar 

  123. Zhu N, Wang Z. Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells. Cancer Res. 1999;59(8):1896–902.

    CAS  PubMed  Google Scholar 

  124. Nguyen MM, et al. Cytoplasmic localization of the androgen receptor is independent of calreticulin. Mol Cell Endocrinol. 2009;302(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  125. Lin YC, et al. Calreticulin regulates beta1-integrin mRNA stability in PC-3 prostate cancer cells. Biomedicines. 2022;10(3):646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lin YC, et al. LPA1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(10):1305–15.

    Article  CAS  PubMed  Google Scholar 

  127. Galazis N, et al. Proteomic biomarkers for ovarian cancer risk in women with polycystic ovary syndrome: a systematic review and biomarker database integration. Fertil Steril. 2012;98(6):1590–601.

    Article  CAS  PubMed  Google Scholar 

  128. Abdullah TM, et al. Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunol Immunother. 2022;71(7):1655–69.

    Article  CAS  PubMed  Google Scholar 

  129. Stoll G, et al. Calreticulin expression: Interaction with the immune infiltrate and impact on survival in patients with ovarian and non-small cell lung cancer. Oncoimmunology. 2016;5(7): e1177692.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National key research and development project (NO. 2021YFE0192100), Natural Science Foundation of Hunan Province (NO.2019JJ40258, NO. 2020JJ4083, NO.2021JJ30694), Science and Technology Innovation Project of Hunan Province (NO. 2020SK51703), Innovation and Entrepreneurship Training Program for College Students in Hunan Province (NO.S202110555296), Key Projects of Hunan Provincial Education Department (NO.21A0285), Natural Science Foundation of Hunan Provincial and Municipal Co-funding (NO.2022JJ50029) , Key projects of Shaoyang Science and Technology Bureau (NO.2021GZ031)

Author information

Authors and Affiliations

Authors

Contributions

MZ, JX and XB wrote the manuscript; XZ and JL collected literatures; FL and ZZ supervised the work and drew the figures.

Corresponding authors

Correspondence to Zhiwei Zhang or Feng Liu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xiao, J., Liu, J. et al. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 23, 1393–1404 (2023). https://doi.org/10.1007/s10238-022-00937-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00937-7

Keywords

Navigation