Skip to main content

Advertisement

Log in

Recent advances in gene therapy: genetic bullets to the root of the problem

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Genetics and molecular genetic techniques have changed many perspectives and paradigms in medicine. Using genetic methods, many diseases have been cured or alleviated. Gene therapy, in its simplest definition, is application of genetic materials and related techniques to treat various human diseases. Evaluation of the trends in the field of medicine and therapeutics clarifies that gene therapy has attracted a lot of attention due to its powerful potential to treat a number of diseases. There are various genetic materials that can be used in gene therapy such as DNA, single- and double-stranded RNA, siRNA and shRNA. The main gene editing techniques used for in vitro and in vivo gene modification are ZNF, TALEN and CRISPR-Cas9. The latter has increased hopes for more precise and efficient gene targeting as it requires two separate recognition sites which makes it more specific and can also cause rapid and sufficient cleavage within the target sequence. There must be carriers for delivering genes to the target tissue. The most commonly used carriers for this purpose are viral vectors such as adenoviruses, adeno-associated viruses and lentiviruses. Non-viral vectors consist of bacterial vectors, liposomes, dendrimers and nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fauci AS. Infectious diseases: considerations for the 21st century. Clin Infect Dis. 2001;32(5):675–85.

    CAS  PubMed  Google Scholar 

  2. Oti M, Brunner HG. The modular nature of genetic diseases. Clin Genet. 2007;71(1):1–11.

    CAS  PubMed  Google Scholar 

  3. Mulligan RC. The basic science of gene therapy. Science. 1993;260(5110):926–32.

    CAS  PubMed  Google Scholar 

  4. Yu M, Poeschla E, Wong-Staal F. Progress towards gene therapy for HIV infection. Gene Ther. 1994;1(1):13–26.

    CAS  PubMed  Google Scholar 

  5. Kumar R, et al. BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res. 2003;9(9):3362–8.

    CAS  PubMed  Google Scholar 

  6. Tan J, et al. TERT promoter mutation determines apoptotic and therapeutic responses of BRAF-mutant cancers to BRAF and MEK inhibitors: Achilles Heel. Proc Natl Acad Sci. 2020;117(27):15846–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Da Vià MC, et al. CIC mutation as a molecular mechanism of acquired resistance to combined BRAF-MEK inhibition in extramedullary multiple myeloma with central nervous system involvement. Oncologist. 2020;25(2):112–8.

    PubMed  Google Scholar 

  8. Verma IM, et al. Gene therapy: promises, problems and prospects. In: Genes and resistance to disease. Springer; 2000. p. 147–57.

    Google Scholar 

  9. Cavazzana-Calvo M, Thrasher A, Mavilio F. The future of gene therapy. Nature. 2004;427(6977):779–81.

    CAS  PubMed  Google Scholar 

  10. Verma IM, Weitzman MD. Gene therapy: twenty-first century medicine. Annu Rev Biochem. 2005;74:711–38.

    CAS  PubMed  Google Scholar 

  11. Meyer F, Finer M. Gene therapy: progress and challenges. Cell Mol Biol. 2001;47(8):1277–94.

    CAS  PubMed  Google Scholar 

  12. Maria BL, et al. Topical review: gene therapy for neurologic disease: benchtop discoveries to bedside applications. 2. The bedside. J Child Neurol. 1997;12(2):77–84.

    CAS  PubMed  Google Scholar 

  13. Brown BD, Lillicrap D. Dangerous liaisons: the role of “danger” signals in the immune response to gene therapy. Blood J Am Soc Hematol. 2002;100(4):1133–40.

    CAS  Google Scholar 

  14. Herzog RW, Cao O, Srivastava A. Two decades of clinical gene therapy–success is finally mounting. Discov Med. 2010;9(45):105.

    PubMed  PubMed Central  Google Scholar 

  15. Robinson A. Idecabtagene Vicleucel (Abecma®). Oncol Times. 2021;43(10):21.

    Google Scholar 

  16. Jaklevic MC. CAR-T therapy is approved for Non-Hodgkin Lymphoma. JAMA. 2021;325(11):1032–1032.

    PubMed  Google Scholar 

  17. Reach T. FDA approves first oncolytic virus therapy: imlygic for melanoma. Oncol Times. 2015;37:36.

    Google Scholar 

  18. Philippidis A. Kymriah, First CAR-T Cancer immunotherapy approved by FDA. Mary Ann Liebert, Inc., NY; 2017

  19. Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 2020;31(3):147–54.

    PubMed  Google Scholar 

  20. Voelker R. CAR-T therapy is approved for mantle cell lymphoma. JAMA. 2020;324(9):832–832.

    PubMed  Google Scholar 

  21. Papadouli I, et al. EMA review of Axicabtagene Ciloleucel (Yescarta) for the treatment of diffuse large B-cell lymphoma. Oncologist. 2020;25(10):894.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Nuijten M. Pricing Zolgensma–the world’s most expensive drug. J Mark Access Health Policy. 2022;10(1):2022353.

    PubMed  Google Scholar 

  23. Ferreira GN, et al. Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol. 2000;18(9):380–8.

    CAS  PubMed  Google Scholar 

  24. Prather KJ, et al. Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzym Microb Technol. 2003;33(7):865–83.

    CAS  Google Scholar 

  25. Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wahlestedt C. Targeting long non-coding RNA to therapeutically upregulate gene expression. Nat Rev Drug Discov. 2013;12(6):433–46.

    CAS  PubMed  Google Scholar 

  27. Naveed A, et al. NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long non-coding RNA isoforms in neuroblastoma. Cell Mol Life Sci. 2021;78(5):2213–30.

    CAS  PubMed  Google Scholar 

  28. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs. Nat Rev Genet. 2002;3(10):737–47.

    CAS  PubMed  Google Scholar 

  29. Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci. 2003;100(17):9779–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakraborty C. Potentiality of small interfering RNAs (siRNA) as recent therapeutic targets for gene-silencing. Curr Drug Targets. 2007;8(3):469–82.

    CAS  PubMed  Google Scholar 

  31. Taxman DJ, et al. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. In: RNA therapeutics. Springer; 2010. p. 139–56.

    Google Scholar 

  32. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys. 2017;46:505–29.

    CAS  PubMed  Google Scholar 

  33. Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fonfara I, et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 2014;42(4):2577–90.

    CAS  PubMed  Google Scholar 

  35. Amitai G, Sorek R. CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol. 2016;14(2):67–76.

    CAS  PubMed  Google Scholar 

  36. Weber T, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol. 2015;33(5):543–8.

    PubMed  Google Scholar 

  37. Bachu R, Bergareche I, Chasin LA. CRISPR-Cas targeted plasmid integration into mammalian cells via non-homologous end joining. Biotechnol Bioeng. 2015;112(10):2154–62.

    CAS  PubMed  Google Scholar 

  38. Cho SW, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. 2014;24(1):132–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Maikova A, et al. Protospacer-adjacent motif specificity during clostridioides difficile type ib crispr-cas interference and adaptation. MBio. 2021;12(4):e02136-21.

    PubMed  PubMed Central  Google Scholar 

  40. Wan H, et al. Probing the behaviour of Cas1-Cas2 upon protospacer binding in CRISPR-Cas systems using molecular dynamics simulations. Sci Rep. 2019;9(1):1–16.

    Google Scholar 

  41. Huang TK, et al. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a. Plant Biotechnol J. 2021;19:1314.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Haapaniemi E, et al. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30.

    CAS  PubMed  Google Scholar 

  43. Khalaf K, et al. CRISPR/Cas9 in cancer immunotherapy: animal models and human clinical trials. Genes. 2020;11(8):921.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188(4):773–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Urnov FD, et al. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.

    CAS  PubMed  Google Scholar 

  46. Holt N, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28(8):839–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pipe SW. Gene therapy for hemophilia. Pediatr Blood Cancer. 2018;65(2):e26865.

    Google Scholar 

  48. Hoban MD, et al. Delivery of genome editing reagents to hematopoietic stem/progenitor cells. Curr Protoc Stem Cell Biol. 2016;36(1):4.1-4.10.

    Google Scholar 

  49. Bedell VM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xia E, et al. TALEN-mediated gene targeting for cystic fibrosis-gene therapy. Genes. 2019;10(1):39.

    PubMed  PubMed Central  Google Scholar 

  51. Dunbar CE, et al. Gene therapy comes of age. Science. 2018;359(6372):eaan4672.

    PubMed  Google Scholar 

  52. Gardlík R, et al. Vectors and delivery systems in gene therapy. Med Sci Monit. 2005;11(4):110–21.

    Google Scholar 

  53. Maguire CA, et al. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics. 2014;11(4):817–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6(2):42.

    PubMed  PubMed Central  Google Scholar 

  55. Robbins PD, Ghivizzani SC. Viral vectors for gene therapy. Pharmacol Ther. 1998;80(1):35–47.

    CAS  PubMed  Google Scholar 

  56. Yi Y, Hahm SH, Lee KH. Retroviral gene therapy: safety issues and possible solutions. Curr Gene Ther. 2005;5(1):25–35.

    CAS  PubMed  Google Scholar 

  57. Yi Y, Jong Noh M, Hee Lee K. Current advances in retroviral gene therapy. Curr Gene Ther. 2011;11(3):218–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Takeuchi Y. Gene therapy using retrovirus vectors: vector development and biosafety at clinical trials. Uirusu. 2015;65(1):27–36.

    PubMed  Google Scholar 

  59. Palu G, et al. Progress with retroviral gene vectors. Rev Med Virol. 2000;10(3):185–202.

    CAS  PubMed  Google Scholar 

  60. Cannon PM, et al. Murine leukemia virus-based Tat-inducible long terminal repeat replacement vectors: a new system for anti-human immunodeficiency virus gene therapy. J Virol. 1996;70(11):8234–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Suerth JD, et al. Self-inactivating alpharetroviral vectors with a split-packaging design. J Virol. 2010;84(13):6626–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maier P, Von Kalle C, Laufs S. Retroviral vectors for gene therapy. Future Microbiol. 2010;5(10):1507–23.

    CAS  PubMed  Google Scholar 

  63. Onodera M, et al. Gene therapy for severe combined immunodeficiency caused by adenosine deaminase deficiency: improved retroviral vectors for clinical trials. Acta Haematol. 1999;101(2):89–96.

    CAS  PubMed  Google Scholar 

  64. Enquist IB, et al. Effective cell and gene therapy in a murine model of Gaucher disease. Proc Natl Acad Sci. 2006;103(37):13819–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Herrera-Carrillo E, Berkhout B. Bone marrow gene therapy for HIV/AIDS. Viruses. 2015;7(7):3910–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Narayan O, Clements JE. Biology and pathogenesis of lentiviruses. J Gen Virol. 1989;70(7):1617–39.

    CAS  PubMed  Google Scholar 

  67. Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol. 1998;9(5):457–63.

    CAS  PubMed  Google Scholar 

  68. Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp. 2010;58(2):107–19.

    CAS  Google Scholar 

  69. Smith JG, et al. Adenovirus. Cell Entry Non-Enveloped Viruses. 2010; 195–224.

  70. Ghosh SS, Gopinath P, Ramesh A. Adenoviral vectors. Appl Biochem Biotechnol. 2006;133(1):9–29.

    CAS  PubMed  Google Scholar 

  71. Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res. 2008;132(1–2):1–14.

    CAS  PubMed  Google Scholar 

  72. McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther. 2004;15(11):1022–33.

    CAS  PubMed  Google Scholar 

  73. Berns KI, Bohenzky RA. Adeno-associated viruses: an update. Adv Virus Res. 1987;32:243–306.

    CAS  PubMed  Google Scholar 

  74. Gao G, et al. Adeno-associated viruses undergo substantial evolution in primates during natural infections. Proc Natl Acad Sci. 2003;100(10):6081–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Berns K, Giraud C. Biology of adeno-associated virus. In: Adeno-Associated Virus (AAV) vectors in gene therapy. Springer; 1996. p. 1–23.

    Google Scholar 

  76. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Whitley RJ, Kimberlin DW, Roizman B. Herpes simplex viruses. In: Clinical infectious diseases. JSTOR; 1998. p. 541–53.

    Google Scholar 

  78. Andreansky SS, et al. The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors. Proc Natl Acad Sci. 1996;93(21):11313–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Aurelian L. Herpes simplex viruses. In: Clinical virology manual. 4th ed. American Society of Microbiology; 2009. p. 424–53.

    Google Scholar 

  80. Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci. 1996;93(21):11307–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Chiocca EA. Oncolytic viruses. Nat Rev Cancer. 2002;2(12):938.

    PubMed  Google Scholar 

  82. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lawler SE, et al. Oncolytic viruses in cancer treatment: a review. JAMA Oncol. 2017;3(6):841–9.

    PubMed  Google Scholar 

  84. Woller N, et al. Oncolytic viruses as anticancer vaccines. Front Oncol. 2014;4:188.

    PubMed  PubMed Central  Google Scholar 

  85. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–9.

    CAS  PubMed  Google Scholar 

  86. Trager MH, Geskin LJ, Saenger YM. Oncolytic viruses for the treatment of metastatic melanoma. Curr Treat Options Oncol. 2020;21(4):1–16.

    Google Scholar 

  87. Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett. 2007;254(2):178–216.

    PubMed  PubMed Central  Google Scholar 

  88. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst. 1997;89(1):21–39.

    CAS  PubMed  Google Scholar 

  89. Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res. 2006;4(3):218–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther. 2014;2(1):1–19.

    Google Scholar 

  91. El-Aneed A. Current strategies in cancer gene therapy. Eur J Pharmacol. 2004;498(1–3):1–8.

    CAS  PubMed  Google Scholar 

  92. Hambleton S. Chickenpox. Curr Opin Infect Dis. 2005;18(3):235–40.

    PubMed  Google Scholar 

  93. Hacein-Bey-Abina S, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    CAS  PubMed  Google Scholar 

  94. Bellini WJ, Rota JS, Rota PA. Virology of measles virus. J Infect Dis. 1994;170(Supp 1):S15–23.

    PubMed  Google Scholar 

  95. Blechacz B, Russell SJ. Measles virus as an oncolytic vector platform. Curr Gene Ther. 2008;8(3):162–75.

    CAS  PubMed  Google Scholar 

  96. Russell SJ, Peng KW. Measles virus for cancer therapy. In: Measles. Springer; 2009. p. 213–41.

    Google Scholar 

  97. Ganar K, et al. Newcastle disease virus: current status and our understanding. Virus Res. 2014;184:71–81.

    CAS  PubMed  Google Scholar 

  98. Zhao H, Peeters BP. Recombinant Newcastle disease virus as a viral vector: effect of genomic location of foreign gene on gene expression and virus replication. J Gen Virol. 2003;84(4):781–8.

    CAS  PubMed  Google Scholar 

  99. Burman B, Pesci G, Zamarin D. Newcastle disease virus at the forefront of cancer immunotherapy. Cancers. 2020;12(12):3552.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001;6(1):66–77.

    CAS  Google Scholar 

  101. Caracciolo G, Amenitsch H. Cationic liposome/DNA complexes: from structure to interactions with cellular membranes. Eur Biophys J. 2012;41(10):815–29.

    CAS  PubMed  Google Scholar 

  102. Stewart MJ, et al. Gene transfer in vivo with DNA–liposome complexes: safety and acute toxicity in mice. Hum Gene Ther. 1992;3(3):267–75.

    CAS  PubMed  Google Scholar 

  103. Masotti A, et al. Comparison of different commercially available cationic liposome–DNA lipoplexes: parameters influencing toxicity and transfection efficiency. Colloids Surf B. 2009;68(2):136–44.

    CAS  Google Scholar 

  104. Tseng W-C, Huang L. Liposome-based gene therapy. Pharm Sci Technol Today. 1998;1(5):206–13.

    CAS  Google Scholar 

  105. Bendas G. Immunoliposomes. BioDrugs. 2001;15(4):215–24.

    CAS  PubMed  Google Scholar 

  106. Paszko E, Senge M. Immunoliposomes. Curr Med Chem. 2012;19(31):5239–77.

    CAS  PubMed  Google Scholar 

  107. Zhang X-X, McIntosh TJ, Grinstaff MW. Functional lipids and lipoplexes for improved gene delivery. Biochimie. 2012;94(1):42–58.

    CAS  PubMed  Google Scholar 

  108. de Ilarduya CT, Sun Y, Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci. 2010;40(3):159–70.

    Google Scholar 

  109. Jewell CM, Lynn DM. Surface-mediated delivery of DNA: cationic polymers take charge. Curr Opin Colloid Interface Sci. 2008;13(6):395–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hwang S, Davis M. Cationic polymers for gene delivery: designs for overcoming barriers to systemic administration. Curr Opin Mol Ther. 2001;3(2):183–91.

    CAS  PubMed  Google Scholar 

  111. Vermeulen LM, et al. The proton sponge hypothesis: fable or fact? Eur J Pharm Biopharm. 2018;129:184–90.

    CAS  PubMed  Google Scholar 

  112. Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev. 2004;33(1):43–63.

    CAS  PubMed  Google Scholar 

  113. Navarro G, DeILarduya CT. Activated and non-activated PAMAM dendrimers for gene delivery in vitro and in vivo. Nanomed Nanotechnol Biol Med. 2009;5(3):287–97.

    CAS  Google Scholar 

  114. Mohanraj V, Chen Y. Nanoparticles—a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  115. Tian H, Chen J, Chen X. Nanoparticles for gene delivery. Small. 2013;9(12):2034–44.

    CAS  PubMed  Google Scholar 

  116. Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149(1):65–71.

    CAS  PubMed  Google Scholar 

  117. Baban CK, et al. Bacteria as vectors for gene therapy of cancer. Bioengineered bugs. 2010;1(6):385–94.

    PubMed  PubMed Central  Google Scholar 

  118. Lin D, et al. Bacterial-based cancer therapy: an emerging toolbox for targeted drug/gene delivery. Biomaterials. 2021;277:121124.

    CAS  PubMed  Google Scholar 

  119. Xiang S, Fruehauf J, Li CJ. Short hairpin RNA–expressing bacteria elicit RNA interference in mammals. Nat Biotechnol. 2006;24(6):697–702.

    CAS  PubMed  Google Scholar 

  120. Bernardes N, Chakrabarty AM, Fialho AM. Engineering of bacterial strains and their products for cancer therapy. Appl Microbiol Biotechnol. 2013;97(12):5189–99.

    CAS  PubMed  Google Scholar 

  121. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141.

    PubMed  PubMed Central  Google Scholar 

  122. Nikolaou M, et al. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metas. 2018;35(4):309–18.

    CAS  Google Scholar 

  123. Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance. Biochim Biophys Acta Rev Cancer. 2019;1872:188310.

    CAS  PubMed  Google Scholar 

  124. Dominiak A, et al. Communication in the cancer microenvironment as a target for therapeutic interventions. Cancers. 2020;12(5):1232.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Asiry S, et al. The cancer cell dissemination machinery as an immunosuppressive niche: a new obstacle towards the era of cancer immunotherapy. Front Immunol. 2021;12:654877.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wu D, et al. Roles of tumor heterogeneity in the development of drug resistance: a call for precision therapy. Seminars in cancer biology. Elsevier; 2017.

    Google Scholar 

  128. Wang Y, et al. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics. 2017;7(5):1360.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Yao C, et al. Reducible self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a for androgen-independent prostate cancer therapy. J Control Release. 2016;232:203–14.

    CAS  PubMed  Google Scholar 

  130. Wilhelm S, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1(5):1–12.

    Google Scholar 

  131. Krzyszczyk P, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;6:79–100.

    PubMed  Google Scholar 

  132. Barthélémy F, Wein N. Personalized gene and cell therapy for Duchenne muscular dystrophy. Neuromuscul Disord. 2018;28(10):803–24.

    PubMed  Google Scholar 

  133. Morash M, et al. The role of next-generation sequencing in precision medicine: a review of outcomes in oncology. J Personal Med. 2018;8(3):30.

    Google Scholar 

  134. Siena S, et al. Targeting the human epidermal growth factor receptor 2 (HER2) oncogene in colorectal cancer. Ann Oncol. 2018;29(5):1108–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. De Boeck K, Amaral MD. Progress in therapies for cystic fibrosis. Lancet Respir Med. 2016;4(8):662–74.

    PubMed  Google Scholar 

  136. Ichikawa H, et al. Actionable gene-based classification toward precision medicine in gastric cancer. Genome Med. 2017;9(1):1–12.

    Google Scholar 

  137. Chatzopoulou F, et al. Dissecting miRNA–gene networks to map clinical utility roads of pharmacogenomics-guided therapeutic decisions in cardiovascular precision medicine. Cells. 2022;11(4):607.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

M.D. wrote the main manuscript text, prepared figures and tables, edited the manuscript and reviewed it.

Corresponding author

Correspondence to Mohsen Danaeifar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The author declares that there is no potential conflict of interest related to this research and publication.

Human or animal rights

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danaeifar, M. Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med 23, 1107–1121 (2023). https://doi.org/10.1007/s10238-022-00925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00925-x

Keywords

Navigation