Skip to main content

Advertisement

Log in

Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Patients suffering from alopecia areata (AA) can lose hair in focal regions, the complete scalp, including eyelashes and eyebrows, or even the entire body. The exact pathology is not yet known, but the most described theory is a collapse of the immune privilege system, which can be found in some specific regions of the body. Different treatment options, local and systemic, are available, but none of them have been proven to be effective in the long term as well for every treatment there should be considered for the possible side effects. In many cases, treated or non-treated, relapse often occurs. The prognosis is uncertain and is negatively influenced by the subtypes alopecia totalis and alopecia universalis and characteristics such as associated nail lesions, hair loss for more than 10 years and a positive familial history. The unpredictable course of the disease also makes it a mental struggle and AA patients are more often associated with depression and anxiety compared to the healthy population. Research into immunology and genetics, more particularly in the field of dendritic cells (DC), is recommended for AA as there is evidence of the possible role of DC in the treatment of other autoimmune diseases such as multiple Sclerosis and cancer. Promising therapies for the future treatment of AA are JAK-STAT inhibitors and PRP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Villasante Fricke AC, Miteva M. Epidemiology and burden of alopecia areata: a systematic review. Clin Cosmet Investig Dermatol. 2015;8:397–403. https://doi.org/10.2147/CCID.S53985.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Marwah M, Nadkarni N, Patil S. ’Ho-ver’ing over alopecia areata: histopathological study of 50 cases. Int J Trichol. 2014;6(1):13–8. https://doi.org/10.4103/0974-7753.136749.

    Article  Google Scholar 

  3. Tan SP, Weller RB. Sudden whitening of the hair in an 82-year-old woman: the ‘overnight greying’ phenomenon. Clin Exp Dermatol. 2012;37(4):458–9. https://doi.org/10.1111/j.1365-2230.2011.04211.x.

    Article  CAS  PubMed  Google Scholar 

  4. Dinh QQ, Chong AH. A case of widespread non-pigmented hair regrowth in diffuse alopecia areata. Australas J Dermatol. 2007;48(4):221–3. https://doi.org/10.1111/j.1440-0960.2007.00390.x.

    Article  PubMed  Google Scholar 

  5. Tobin DJ, Fenton DA, Kendall MD. Ultrastructural observations on the hair bulb melanocytes and melanosomes in acute alopecia areata. J Invest Derm. 1990;94(6):803–7. https://doi.org/10.1111/1523-1747.ep12874660.

    Article  CAS  PubMed  Google Scholar 

  6. Finner AM. Alopecia areata: clinical presentation, diagnosis, and unusual cases. Dermatol Ther. 2011;24(3):348–54. https://doi.org/10.1111/j.1529-8019.2011.01413.x.

    Article  PubMed  Google Scholar 

  7. Yesudian P, Thambiah AS. Perinevoid alopecia. an unusual variety of alopecia areata. Arch Dermatol. 1976;112(10):1432–4.

    Article  CAS  Google Scholar 

  8. Sato-Kawamura M, Aiba S, Tagami H. Acute diffuse and total alopecia of the female scalp .a new subtype of diffuse alopecia areata that has a favorable prognosis. Dermatology. 2002;205(4):367–73. https://doi.org/10.1159/000066435.

    Article  PubMed  Google Scholar 

  9. Rodgers AR. Why finding a treatment for alopecia areata is important: a multifaceted perspective. J Invest Derm Symp. 2018;19(1):S51–3. https://doi.org/10.1016/j.jisp.2017.10.008.

    Article  Google Scholar 

  10. Hunt N, McHale S. The psychological impact of alopecia. BMJ (Clin Res). 2005;331(7522):951–3. https://doi.org/10.1136/bmj.331.7522.951.

    Article  Google Scholar 

  11. Azzawi S, Penzi LR, Senna MM. Immune privilege collapse and alopecia development: is stress a factor. Skin Appendage Disord. 2018;4(4):236–44. https://doi.org/10.1159/000485080.

    Article  PubMed  Google Scholar 

  12. Olsen EA, Hordinsky MK, Price VH, Roberts JL, Shapiro J, Canfield D, et al. Alopecia areata investigational assessment guidelines–part II. national alopecia areata foundation. J Am Acad Dermatol. 2004;51(3):440–7. https://doi.org/10.1016/j.jaad.2003.09.032.

    Article  PubMed  Google Scholar 

  13. Jang YH, Moon SY, Lee WJ, Lee SJ, Lee WK, Park BC, et al. Alopecia areata progression index, a scoring system for evaluating overall hair loss activity in alopecia areata patients with pigmented hair: a development and reliability assessment. Dermatology. 2016;232(2):143–9. https://doi.org/10.1159/000442816.

    Article  PubMed  Google Scholar 

  14. Lee H, Choe SJ, Lee WS. Method for describing patterns and distributions of alopecia areata which may be helpful for patient characterization and predicting prognosis. J Dermatol. 2019. https://doi.org/10.1111/1346-8138.14989.

    Article  PubMed  Google Scholar 

  15. Hordinsky MK. Overview of alopecia areata. J Invest Derm Symp. 2013;16(1):S13–5. https://doi.org/10.1038/jidsymp.2013.4.

    Article  CAS  Google Scholar 

  16. Xin C, Sun X, Lu L, Yang R, Shan L, Wang Y. Increased incidence of thyroid disease in patients with alopecia areata: a systematic review and meta-analysis. Dermatology. 2019;2019:1–4. https://doi.org/10.1159/000502025.

    Article  Google Scholar 

  17. Chelidze K, Lipner SR. Nail changes in alopecia areata: an update and review. Int J Dermatol. 2018;57(7):776–83. https://doi.org/10.1111/ijd.13866.

    Article  PubMed  Google Scholar 

  18. Majid I, Keen MA. Alopecia areata: an update. British J Med Practitioners. 2012;5(3):a530.

    Google Scholar 

  19. Pratt CH, King LE Jr, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata Nat Rev Dis Primers. 2017;3:17011. https://doi.org/10.1038/nrdp.2017.11.

    Article  PubMed  Google Scholar 

  20. Kossard S. Frontal fibrosing alopecia, just lichen planopilaris? J Am Acad Dermatol. 2019;81(2):e51. https://doi.org/10.1016/j.jaad.2019.02.072.

    Article  PubMed  Google Scholar 

  21. Poblet E, Jiménez F, Pascual A, Piqué E. Frontal fibrosing alopecia versus lichen planopilaris: a clinicopathological study. Int J Dermatol. 2006;45(4):375–80. https://doi.org/10.1111/j.1365-4632.2006.02507.x.

    Article  PubMed  Google Scholar 

  22. Li DG, Huang KP, Xia FD, Joyce C, Scott DA, Qureshi AA, et al. Development and pilot-testing of the alopecia areata assessment tool (ALTO). PLoS ONE. 2018;13(6):e0196517. https://doi.org/10.1371/journal.pone.0196517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wyrwich KW, Kitchen H, Knight S, Aldhouse NVJ, Macey J, Nunes FP, et al. Development of the scalp hair assessment patient-reported outcome (pro) measure for alopecia areata. Br J Dermatol. 2020. https://doi.org/10.1111/bjd.19024.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Werner B, Mulinari-Brenner F. Clinical and histological challenge in the differential diagnosis of diffuse alopecia: female androgenetic alopecia, telogen effluvium and alopecia areata–part II. An Bras Dermatol. 2012;87(6):884–90.

    Article  Google Scholar 

  25. Guttikonda AS, Aruna C, Ramamurthy DV, Sridevi K, Alagappan SK. Evaluation of clinical significance of dermoscopy in alopecia areata. Indian J Dermatol. 2016;61(6):628–33. https://doi.org/10.4103/0019-5154.193668.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mahmoudi H, Salehi M, Moghadas S, Ghandi N, Teimourpour A, Daneshpazhooh M. Dermoscopic findings in 126 patients with alopecia areata: a cross-sectional study. Int J Trichology. 2018;10(3):118–23. https://doi.org/10.4103/ijt.ijt_102_17.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pirmez R. Revisiting coudability hairs in alopecia areata: the story behind the name. Skin Appendage Disord. 2016;2(1–2):76–8. https://doi.org/10.1159/000448811.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waskiel A, Rakowska A, Sikora M, Olszewska M, Rudnicka L. Trichoscopy of alopecia areata: an update. J Dermatol. 2018;45(6):692–700. https://doi.org/10.1111/1346-8138.14283.

    Article  PubMed  Google Scholar 

  29. Jain N, Doshi B, Khopkar U. Trichoscopy in alopecias: diagnosis simplified. Clin Exp Dermatol. 2013;5(4):170–8. https://doi.org/10.4103/0974-7753.130385.

    Article  Google Scholar 

  30. Whiting DA. The histopathology of alopecia areata in vertical and horizontal sections. Dermatol Ther. 2001;14(4):297–305. https://doi.org/10.1046/j.1529-8019.2001.01037.x.

    Article  Google Scholar 

  31. Mitchell AJ, Krull EA. Alopecia areata: Pathogenesis and treatment. J Am Acad Dermatol. 1984;11(5, Part 1):763–75. https://doi.org/10.1016/S0190-9622(84)80450-8.

    Article  CAS  PubMed  Google Scholar 

  32. Ito T, Hashizume H, Shimauchi T, Funakoshi A, Ito N, Fukamizu H, et al. CXCL10 produced from hair follicles induces Th1 and Tc1 cell infiltration in the acute phase of alopecia areata followed by sustained Tc1 accumulation in the chronic phase. J Dermatol Sci. 2013;69(2):140–7. https://doi.org/10.1016/j.jdermsci.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  33. Peckham SJ, Sloan SB, Elston DM. Histologic features of alopecia areata other than peribulbar lymphocytic infiltrates. J Am Acad Dermatol. 2011;65(3):615–20. https://doi.org/10.1016/j.jaad.2011.02.017.

    Article  PubMed  Google Scholar 

  34. Elston DM, McCollough ML, Bergfeld WF, Liranzo MO, Heibel M. Eosinophils in fibrous tracts and near hair bulbs: a helpful diagnostic feature of alopecia areata. J Am Acad Dermatol. 1997;37(1):101–6. https://doi.org/10.1016/s0190-9622(97)70219-6.

    Article  CAS  PubMed  Google Scholar 

  35. Happle R, Klein HM, Macher E. Topical immunotherapy changes the composition of the peribulbar infiltrate in alopecia areata. Arch Dermatol Res. 1986;278(3):214–8. https://doi.org/10.1007/bf00412926.

    Article  CAS  PubMed  Google Scholar 

  36. Whiting DA. Histopathology of alopecia areata in horizontal sections of scalp biopsies. J Invest Dermatol. 1995;104(5 Suppl):26s-s27. https://doi.org/10.1038/jid.1995.46.

    Article  CAS  PubMed  Google Scholar 

  37. Fuentes-Duculan J, Gulati N, Bonifacio KM, Kunjravia N, Zheng X, Suarez-Farinas M, et al. Biomarkers of alopecia areata disease activity and response to corticosteroid treatment. Exp Dermatol. 2016;25(4):282–6. https://doi.org/10.1111/exd.12918.

    Article  CAS  PubMed  Google Scholar 

  38. Kennedy Crispin M, Ko JM, Craiglow BG, Li S, Shankar G, Urban JR, et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight. 2016;1(15):e89776. https://doi.org/10.1172/jci.insight.89776.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Suarez-Farinas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87. https://doi.org/10.1016/j.jaci.2015.06.032.

    Article  CAS  PubMed  Google Scholar 

  40. Whiting DA. Histopathologic features of alopecia areata: a new look. Arch Dermatol. 2003;139(12):1555–9. https://doi.org/10.1001/archderm.139.12.1555.

    Article  PubMed  Google Scholar 

  41. Singh K, Sharma S, Singh UR, Bhattacharya SN. A Comparison of vertical and transverse sections in the histological diagnosis of alopecia areata scalp biopsy specimens. Int J Trichol. 2016;8(3):111–5. https://doi.org/10.4103/0974-7753.188964.

    Article  Google Scholar 

  42. Gade VKV, Mony A, Munisamy M, Chandrashekar L, Rajappa M. An investigation of vitamin D status in alopecia areata. Clin Exp Med. 2018;18(4):577–84. https://doi.org/10.1007/s10238-018-0511-8.

    Article  CAS  PubMed  Google Scholar 

  43. Marahatta S, Agrawal S, Khan S. Study on serum vitamin D in alopecia areata patients. J Nepal Health Res Counc. 2019;17(1):21–5. https://doi.org/10.33314/jnhrc.1475.

    Article  PubMed  Google Scholar 

  44. Unal M, Gonulalan G. Serum vitamin D level is related to disease severity in pediatric alopecia areata. J Cosmet Dermatol. 2018;17(1):101–4. https://doi.org/10.1111/jocd.12352.

    Article  PubMed  Google Scholar 

  45. Rehman F, Dogra N, Wani MA. Serum vitamin d levels and alopecia areata- a hospital based case-control study from North-India. Int J Trichology. 2019;11(2):49–57. https://doi.org/10.4103/ijt.ijt_3_19.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee S, Kim BJ, Lee CH, Lee WS. Increased prevalence of vitamin D deficiency in patients with alopecia areata: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol. 2018;32(7):1214–21. https://doi.org/10.1111/jdv.14987.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson JM, Mirza MA, Park MK, Qureshi AA, Cho E. The role of micronutrients in alopecia areata: a review. Am J Clin Dermatol. 2017;18(5):663–79. https://doi.org/10.1007/s40257-017-0285-x.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brzezinska-Wcislo L, Bergler-Czop B, Wcislo-Dziadecka D, Lis-Swiety A. New aspects of the treatment of alopecia areata. Postepy Dermatol Alergol. 2014;31(4):262–5. https://doi.org/10.5114/pdia.2014.40923.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alkhalifah A. Topical and intralesional therapies for alopecia areata. Dermatol Ther. 2011;24(3):355–63. https://doi.org/10.1111/j.1529-8019.2011.01419.x.

    Article  PubMed  Google Scholar 

  50. Burroway B, Griggs J, Tosti A. Alopecia totalis and universalis long-term outcomes: a review. J Eur Acad Dermatol Venereol. 2019. https://doi.org/10.1111/jdv.15994.

    Article  PubMed  Google Scholar 

  51. Gupta MA, Gupta AK. Depression and suicidal ideation in dermatology patients with acne, alopecia areata, atopic dermatitis and psoriasis. Br J Dermatol. 1998;139(5):846–50. https://doi.org/10.1046/j.1365-2133.1998.02511.x.

    Article  CAS  PubMed  Google Scholar 

  52. Petukhova L, Duvic M, Hordinsky M, Norris D, Price V, Shimomura Y, et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature. 2010;466(7302):113–7. https://doi.org/10.1038/nature09114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, et al. Dendritic cells in the pathogenesis and treatment of human diseases: a janus bifrons? Immunotherapy. 2011;3(10):1203–22. https://doi.org/10.2217/imt.11.110.

    Article  CAS  PubMed  Google Scholar 

  54. Hoffmann JM, Schmitt M, Ni M, Schmitt A. Next-generation dendritic cell-based vaccines for leukemia patients. Immunotherapy. 2017;9(2):173–81. https://doi.org/10.2217/imt-2016-0116.

    Article  CAS  PubMed  Google Scholar 

  55. Paus R, Ito N, Takigawa M, Ito T. The hair follicle and immune privilege. J Invest Derm Symp P. 2003;8(2):188–94. https://doi.org/10.1046/j.1087-0024.2003.00807.x.

    Article  Google Scholar 

  56. Fenster RJ, Eisen JL. Checking the brain’s immune privilege: evolving theories of brain-immune interactions. Biol Psychiat. 2017;81(2):e7–9. https://doi.org/10.1016/j.biopsych.2016.10.027.

    Article  PubMed  Google Scholar 

  57. Niederkorn JY. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006;7(4):354–9. https://doi.org/10.1038/ni1328.

    Article  CAS  PubMed  Google Scholar 

  58. Kinori M, Bertolini M, Funk W, Samuelov L, Meyer KC, Emelianov VU, et al. Calcitonin gene-related peptide (CGRP) may award relative protection from interferon-gamma-induced collapse of human hair follicle immune privilege. Exp Dermatol. 2012;21(3):223–6. https://doi.org/10.1111/j.1600-0625.2011.01432.x.

    Article  CAS  PubMed  Google Scholar 

  59. Breitkopf T, Lo BKK, Leung G, Wang E, Yu M, Carr N, et al. Somatostatin expression in human hair follicles and its potential role in immune privilege. J Invest Derm. 2013;133(7):1722–30. https://doi.org/10.1038/jid.2013.53.

    Article  CAS  PubMed  Google Scholar 

  60. Schmid P, Itin P, Rufli T. In situ analysis of transforming growth factors-beta (TGF-beta 1, TGF-beta 2, TGF-beta 3) and TGF-beta type II receptor expression in basal cell carcinomas. Br J Dermatol. 1996;134(6):1044–51.

    CAS  PubMed  Google Scholar 

  61. Slominski A, Wortsman J, Mazurkiewicz JE, Matsuoka L, Dietrich J, Lawrence K, et al. Detection of proopiomelanocortin-derived antigens in normal and pathologic human skin. J Lab Clin Med. 1993;122(6):658–66. https://doi.org/10.5555/uri:pii:002221439390247V.

    Article  CAS  PubMed  Google Scholar 

  62. Kang H, Wu WY, Lo BK, Yu M, Leung G, Shapiro J, et al. Hair follicles from alopecia areata patients exhibit alterations in immune privilege-associated gene expression in advance of hair loss. J Invest Dermatol. 2010;130(11):2677–80. https://doi.org/10.1038/jid.2010.180.

    Article  CAS  PubMed  Google Scholar 

  63. Gilhar A. Collapse of immune privilege in alopecia areata: coincidental or substantial? J Invest Dermatol. 2010;130(11):2535–7. https://doi.org/10.1038/jid.2010.260.

    Article  CAS  PubMed  Google Scholar 

  64. Paus R, Slominski A, Czarnetzki BM. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med. 1993;66(6):541–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61(7):1329–37.

    Article  CAS  Google Scholar 

  66. Harris JE. Vitiligo and alopecia areata: apples and oranges? Exp Dermatol. 2013;22(12):785–9. https://doi.org/10.1111/exd.12264.

    Article  PubMed  Google Scholar 

  67. Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M, Paus R. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. American J Pathol. 2004;164(2):623–34. https://doi.org/10.1016/s0002-9440(10)63151-3.

    Article  CAS  Google Scholar 

  68. Ruckert R, Hofmann U, van der Veen C, Bulfone-Paus S, Paus R. MHC class I expression in murine skin: developmentally controlled and strikingly restricted intraepithelial expression during hair follicle morphogenesis and cycling, and response to cytokine treatment in vivo. J Invest Dermatol. 1998;111(1):25–30. https://doi.org/10.1046/j.1523-1747.1998.00228.x.

    Article  CAS  PubMed  Google Scholar 

  69. Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol. 2014;14(6):377–91. https://doi.org/10.1038/nri3667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571–606. https://doi.org/10.1146/annurev.immunol.23.021704.115601.

    Article  CAS  PubMed  Google Scholar 

  71. Chan AY, Anderson MS. Central tolerance to self revealed by the autoimmune regulator. Ann N Y Acad Sci. 2015;1356:80–9. https://doi.org/10.1111/nyas.12960.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bruserud O, Oftedal BE, Wolff AB, Husebye ES. AIRE-mutations and autoimmune disease. Curr Opin Immunol. 2016;43:8–15. https://doi.org/10.1016/j.coi.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  73. Tazi-Ahnini R, Cork MJ, Gawkrodger DJ, Birch MP, Wengraf D, McDonagh AJ, et al. Role of the autoimmune regulator (AIRE) gene in alopecia areata: strong association of a potentially functional AIRE polymorphism with alopecia universalis. Tissue Antigens. 2002;60(6):489–95. https://doi.org/10.1034/j.1399-0039.2002.600604.x.

    Article  CAS  PubMed  Google Scholar 

  74. Chung CY, Ysebaert D, Berneman ZN, Cools N. Dendritic cells: cellular mediators for immunological tolerance. Clin Dev Immunol. 2013;2013:972865. https://doi.org/10.1155/2013/972865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69. https://doi.org/10.1038/nri3254.

    Article  CAS  PubMed  Google Scholar 

  76. Volpe E, Sambucci M, Battistini L, Borsellino G. Fas-fas ligand: checkpoint of T cell functions in multiple sclerosis. Front Immunol. 2016;7:382. https://doi.org/10.3389/fimmu.2016.00382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. The Importance of dendritic cells in maintaining immune tolerance. J Immunol. 2017;198(6):2223–31. https://doi.org/10.4049/jimmunol.1601629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yanofsky VR, Mitsui H, Felsen D, Carucci JA. Understanding dendritic cells and their role in cutaneous carcinoma and cancer immunotherapy. Clin Dev Immunol. 2013;2013:624123. https://doi.org/10.1155/2013/624123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jaitley S, Saraswathi TR. Pathophysiology of Langerhans cells. J Oral Maxillofac Pathol: JOMFP. 2012;16(2):239–44. https://doi.org/10.4103/0973-029X.99077.

    Article  PubMed  Google Scholar 

  80. Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology. 2013;140(1):22–30. https://doi.org/10.1111/imm.12117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41. https://doi.org/10.1111/j.0105-2896.2009.00886.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ayala-Garcia I, Hernandez-Segura AM, Castell-Rodriguez A, Alvarez Perez SJ, Tellez BH, Ramirez-Gonzalez MD. Participation of epidermal langerhans cells in human pathology and their potential as targets for drug development: a review of literature. Proc West Pharmacol Soc. 2005;48:13–20.

    CAS  PubMed  Google Scholar 

  83. Upadhyay J, Upadhyay RB, Agrawal P, Jaitley S, Shekhar R. Langerhans cells and their role in oral mucosal diseases. N Am J Med Sci. 2013;5(9):505–14. https://doi.org/10.4103/1947-2714.118923.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bangert C, Brunner PM, Stingl G. Immune functions of the skin. Clin Dermatol. 2011;29(4):360–76. https://doi.org/10.1016/j.clindermatol.2011.01.006.

    Article  PubMed  Google Scholar 

  85. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73. https://doi.org/10.1016/j.immuni.2012.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Takayama K, Yokozeki H, Ghoreishi M, Satoh T, Umeda T, Nishioka K, et al. IL-4 Inhibits the migration of human langerhans cells through the downregulation of TNF receptor II expression. J Invest Derm. 1999;113(4):541–6. https://doi.org/10.1046/j.1523-1747.1999.00629.x.

    Article  CAS  PubMed  Google Scholar 

  87. Brinkman CC, Rouhani SJ, Srinivasan N, Engelhard VH. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J Immunol. 2013;191(5):2412–25. https://doi.org/10.4049/jimmunol.1300651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gupta P, Freyschmidt-Paul P, Vitacolonna M, Kiessling S, Hummel S, Hildebrand D, et al. A chronic contact eczema impedes migration of antigen-presenting cells in alopecia areata. J Invest Dermatol. 2006;126(7):1559–73. https://doi.org/10.1038/sj.jid.5700328.

    Article  CAS  PubMed  Google Scholar 

  89. Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T. Dendritic cells: biology of the skin. Contact Dermat. 2009;60(1):2–20. https://doi.org/10.1111/j.1600-0536.2008.01443.x.

    Article  CAS  Google Scholar 

  90. De Koker SLB, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remona JP, De Geest B. Designing polymeric particles for antigen delivery. Chem Soc Rev. 2011;40:320–39. https://doi.org/10.1039/B914943K.

    Article  PubMed  Google Scholar 

  91. Fitzgerald-Bocarsly P, Dai J, Singh S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008;19(1):3–19. https://doi.org/10.1016/j.cytogfr.2007.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Abou Rahal J, Kurban M, Kibbi AG, Abbas O. Plasmacytoid dendritic cells in alopecia areata: missing link? J Eur Acad Dermatol Venereol. 2016;30(1):119–23. https://doi.org/10.1111/jdv.12932.

    Article  CAS  PubMed  Google Scholar 

  93. Suárez-Fariñas M, Ungar B, Noda S, Shroff A, Mansouri Y, Fuentes-Duculan J, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87. https://doi.org/10.1016/j.jaci.2015.06.032.

    Article  CAS  PubMed  Google Scholar 

  94. Herrmann M, Scholmerich J, Straub RH. Stress and rheumatic diseases. Rheum Dis Clin North America. 2000;26(4):737–63.

    Article  CAS  Google Scholar 

  95. Stojanovich L. Stress and autoimmunity. Autoimmun Rev. 2010;9(5):A271–6. https://doi.org/10.1016/j.autrev.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  96. Misery L, Rousset H. Is alopecia areata a psychosomatic disease? La Revue de medecine interne. 2001;22(3):274–9.

    Article  CAS  Google Scholar 

  97. Ghanizadeh A, Ayoobzadehshirazi A. A review of psychiatric disorders comorbidities in patients with alopecia areata. Int J Trichol. 2014;6(1):2–4. https://doi.org/10.4103/0974-7753.136746.

    Article  Google Scholar 

  98. Titeca G, Goudetsidis L, Francq B, Sampogna F, Gieler U, Tomas-Aragones L, et al. “The psychosocial burden of alopecia areata and androgenetica”: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J Eur Acad Dermatol Venereol. 2019. https://doi.org/10.1111/jdv.15927.

    Article  PubMed  Google Scholar 

  99. Lai YC, Yew YW. Severe autoimmune adverse events post herpes zoster vaccine: a case-control study of adverse events in a national database. J Drugs Dermatol : JDD. 2015;14(7):681–4.

    PubMed  Google Scholar 

  100. Geier DA, Geier MR. A case-control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events. Clin Rheumatol. 2015;34(7):1225–31. https://doi.org/10.1007/s10067-014-2846-1.

    Article  PubMed  Google Scholar 

  101. Chu CH, Cheng YP, Chan JY. Alopecia areata after vaccination: recurrence with rechallenge. Pediatr Dermatol. 2016;33(3):e218–9. https://doi.org/10.1111/pde.12849.

    Article  PubMed  Google Scholar 

  102. Hammerschmidt M, Mulinari BF. Efficacy and safety of methotrexate in alopecia areata. An Bras Dermatol. 2014;89(5):729–34.

    Article  Google Scholar 

  103. Horst HJ, Flad HD. Corticosteroid-interleukin 2 interactions: inhibition of binding of interleukin 2 to interleukin 2 receptors. Clin Exp Immunol. 1987;68(1):156–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee GC, Yang IM, Kim BJ, Woo JT, Kim SW, Kim JW, et al. Identification of glucocorticoid response element of the rat TRH gene. Korean J Intern Med. 1996;11(2):138–44. https://doi.org/10.3904/kjim.1996.11.2.138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–24. https://doi.org/10.1038/nri.2017.142.

    Article  CAS  PubMed  Google Scholar 

  106. Cato AC, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. Sci STKE. 2002;2002(138):re9. https://doi.org/10.1126/stke.2002.138.re9.

    Article  PubMed  Google Scholar 

  107. Alsantali A. Alopecia areata: a new treatment plan. Clin Cosmet Investig Dermatol. 2011;4:107–15. https://doi.org/10.2147/ccid.S22767.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tosti A, Piraccini BM, Pazzaglia M, Vincenzi C. Clobetasol propionate 005% under occlusion in the treatment of alopecia totalis/universalis. J Am Acad Dermatol. 2003;49(1):96–8. https://doi.org/10.1067/mjd.2003.423.

    Article  PubMed  Google Scholar 

  109. Kalkoff KW, Macher E. Growing of hair in alopecia areata and maligna after intracutaneous hydrocortisone injection. Hautarzt. 1958;9(10):441–51.

    CAS  PubMed  Google Scholar 

  110. Kumaresan M. Intralesional steroids for alopecia areata. Int J Trichology. 2010;2(1):63–5. https://doi.org/10.4103/0974-7753.66920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Buckley DA, Du Vivier AW. The therapeutic use of topical contact sensitizers in benign dermatoses. Br J Dermatol. 2001;145(3):385–405.

    Article  CAS  Google Scholar 

  112. Wilkerson MG, Henkin J, Wilkin JK, Smith RG. Squaric acid and esters: analysis for contaminants and stability in solvents. J Am Acad Dermatol. 1985;13(2 Pt 1):229–34.

    Article  CAS  Google Scholar 

  113. Singh G, Lavanya MS. Topical Immunotherapy in alopecia areata. Int J Trichol. 2010;2(1):36–9. https://doi.org/10.4103/0974-7753.66911.

    Article  Google Scholar 

  114. Gong Y, Zhao Y, Zhang X, Qi S, Li S, Ye Y, et al. Serum level of IL-4 predicts response to topical immunotherapy with diphenylcyclopropenone in alopecia areata. Exp Dermatol. 2020;29(3):231–8. https://doi.org/10.1111/exd.13758.

    Article  CAS  PubMed  Google Scholar 

  115. Cotellessa C, Peris K, Caracciolo E, Mordenti C, Chimenti S. The use of topical diphenylcyclopropenone for the treatment of extensive alopecia areata. J Am Acad Dermatol. 2001;44(1):73–6. https://doi.org/10.1067/mjd.2001.109309.

    Article  CAS  PubMed  Google Scholar 

  116. Aghaei S. Topical immunotherapy of severe alopecia areata with diphenylcyclopropenone (DPCP): experience in an Iranian population. BMC Dermatol. 2005;5(1):6. https://doi.org/10.1186/1471-5945-5-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chiang KS, Mesinkovska NA, Piliang MP, Bergfeld WF. Clinical efficacy of diphenylcyclopropenone in alopecia areata: retrospective data analysis of 50 patients. J Invest Derm Symp P. 2015;17(2):50–5. https://doi.org/10.1038/jidsymp.2015.28.

    Article  Google Scholar 

  118. Weise K, Kretzschmar L, John SM, Hamm H. Topical immunotherapy in alopecia areata: anamnestic and clinical criteria of prognostic significance. Dermatology. 1996;192(2):129–33. https://doi.org/10.1159/000246337.

    Article  CAS  PubMed  Google Scholar 

  119. Jang YH, Jung HJ, Moon SY, Lee WJ, Lee SJ, Lee WK, et al. Systematic review and quality analysis of studies on the efficacy of topical diphenylcyclopropenone treatment for alopecia areata. J Am Acad Dermatol. 2017;77(1):170–2. https://doi.org/10.1016/j.jaad.2017.03.015.

    Article  PubMed  Google Scholar 

  120. Goren A, McCoy J, Kovacevic M, Situm M, Chitalia J, Dhurat R, et al. The effect of topical minoxidil treatment on follicular sulfotransferase enzymatic activity. J Biol Regul Homeost Agents. 2018;32(4):937–40.

    CAS  PubMed  Google Scholar 

  121. Goren A, Shapiro J, Roberts J, McCoy J, Desai N, Zarrab Z, et al. Clinical utility and validity of minoxidil response testing in androgenetic alopecia. Dermatol Ther. 2015;28(1):13–6. https://doi.org/10.1111/dth.12164.

    Article  PubMed  Google Scholar 

  122. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94. https://doi.org/10.1111/j.1365-2133.2004.05785.x.

    Article  CAS  PubMed  Google Scholar 

  123. Lucky AW, Piacquadio DJ, Ditre CM, Dunlap F, Kantor I, Pandya AG, et al. A randomized, placebo-controlled trial of 5% and 2% topical minoxidil solutions in the treatment of female pattern hair loss. J Am Acad Dermatol. 2004;50(4):541–53. https://doi.org/10.1016/j.jaad.2003.06.014.

    Article  PubMed  Google Scholar 

  124. Ghonemy S, Alarawi A, Bessar H. Efficacy and safety of a new 10% topical minoxidil versus 5% topical minoxidil and placebo in the treatment of male androgenetic alopecia: a trichoscopic evaluation. J Dermatol Treat. 2019;47:1–6. https://doi.org/10.1080/09546634.2019.1654070.

    Article  CAS  Google Scholar 

  125. Goren A, Sharma A, Dhurat R, Shapiro J, Sinclair R, Situm M, et al. Low-dose daily aspirin reduces topical minoxidil efficacy in androgenetic alopecia patients. Dermatol Ther. 2018;31(6):e12741. https://doi.org/10.1111/dth.12741.

    Article  CAS  PubMed  Google Scholar 

  126. Gonzalez M, Landa N, Gardeazabal J, Calderon MJ, Bilbao I, Diaz Perez JL. Generalized hypertrichosis after treatment with topical minoxidil. Clin Exp Dermatol. 1994;19(2):157–8. https://doi.org/10.1111/j.1365-2230.1994.tb01147.x.

    Article  CAS  PubMed  Google Scholar 

  127. Peluso AM, Misciali C, Vincenzi C, Tosti A. Diffuse hypertrichosis during treatment with 5% topical minoxidil. Br J Dermatol. 1997;136(1):118–20.

    Article  CAS  Google Scholar 

  128. Dawber RP, Rundegren J. Hypertrichosis in females applying minoxidil topical solution and in normal controls. J Eur Acad Dermatol Venereol. 2003;17(3):271–5.

    Article  CAS  Google Scholar 

  129. Rossi A, Cantisani C, Melis L, Iorio A, Scali E, Calvieri S. Minoxidil use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Dis. 2012;6(2):130–6.

    Article  CAS  Google Scholar 

  130. Adil A, Godwin M. The effectiveness of treatments for androgenetic alopecia: a systematic review and meta-analysis. J Am Acad Dermatol. 2017;77(1):136-41.e5. https://doi.org/10.1016/j.jaad.2017.02.054.

    Article  PubMed  Google Scholar 

  131. Sung CT, Juhasz ML, Choi FD, Mesinkovska NA. The Efficacy of topical minoxidil for non-scarring alopecia: a systematic review. J Drugs Dermatol: JDD. 2019;18(2):155–60.

    PubMed  Google Scholar 

  132. Situm M, Bulat V, Majcen K, Dzapo A, Jezovita J. Benefits of controlled ultraviolet radiation in the treatment of dermatological diseases. Collegium Antropologicum. 2014;38(4):1249–53.

    PubMed  Google Scholar 

  133. Passeron T, Ortonne JP. Use of the 308-nm excimer laser for psoriasis and vitiligo. Clin Dermatol. 2006;24(1):33–42. https://doi.org/10.1016/j.clindermatol.2005.10.024.

    Article  PubMed  Google Scholar 

  134. Sigmundsdottir H, Johnston A, Gudjonsson JE, Valdimarsson H. Narrowband-UVB irradiation decreases the production of pro-inflammatory cytokines by stimulated T cells. Arch Dermatol Res. 2005;297(1):39–42. https://doi.org/10.1007/s00403-005-0565-9.

    Article  CAS  PubMed  Google Scholar 

  135. Byun JW, Moon JH, Bang CY, Shin J, Choi GS. Effectiveness of 308-nm excimer laser therapy in treating alopecia areata, determined by examining the treated sides of selected alopecic patches. Dermatology. 2015;231(1):70–6. https://doi.org/10.1159/000381912.

    Article  CAS  PubMed  Google Scholar 

  136. Welsh O. Phototherapy for alopecia areata. Clin Dermatol. 2016;34(5):628–32. https://doi.org/10.1016/j.clindermatol.2016.05.014.

    Article  PubMed  Google Scholar 

  137. Mohamed Z, Bhouri A, Jallouli A, Fazaa B, Kamoun M, Mokhtar I. Alopecia areata treatment with a phototoxic dose of UVA and topical 8-methoxypsoralen. J Eur Acad Dermatol Venereol. 2005;19(5):552–5. https://doi.org/10.1111/j.1468-3083.2005.01226.x.

    Article  CAS  PubMed  Google Scholar 

  138. Majumdar B, De A, Ghosh S, Sil A, Sarda A, Lahiri K, et al. “Turban PUVAsol:” a simple, novel, effective, and safe treatment option for advanced and refractory cases of alopecia areata. Int J Trichol. 2018;10(3):124–8. https://doi.org/10.4103/ijt.ijt_95_17.

    Article  Google Scholar 

  139. Mitchell AJ, Douglass MC. Topical photochemotherapy for alopecia areata. J Am Acad Dermatol. 1985;12(4):644–9. https://doi.org/10.1016/S0190-9622(85)70088-6.

    Article  CAS  PubMed  Google Scholar 

  140. Abdullah An, Keczkes K. Cutaneous and ocular side-effects of PUVA photochemotherapy-a 10-year follow-up study. Clin Exp Dermatol. 1984;14(6):421–6. https://doi.org/10.1111/j.1365-2230.1989.tb02602.x.

    Article  Google Scholar 

  141. Burton JL, Shuster S. Large doses of glucocorticoid in the treatment of alopecia areata. Acta dermato-venereologica. 1975;55(6):493–6.

    CAS  PubMed  Google Scholar 

  142. Shreberk-Hassidim R, Ramot Y, Gilula Z, Zlotogorski A. A systematic review of pulse steroid therapy for alopecia areata. J Am Acad Dermatol. 2016;74(2):372–4. https://doi.org/10.1016/j.jaad.2015.09.045.

    Article  PubMed  Google Scholar 

  143. Nakajima T, Inui S, Itami S. Pulse corticosteroid therapy for alopecia areata: study of 139 patients. Dermatology. 2007;215(4):320–4. https://doi.org/10.1159/000107626.

    Article  CAS  PubMed  Google Scholar 

  144. Lim S-K, Lim C-A, Kwon IS, Im M, Seo Y-J, Kim C-D, et al. Low-dose systemic methotrexate therapy for recalcitrant alopecia areata. Ann Dermatol. 2017;29(3):263–7. https://doi.org/10.5021/ad.2017.29.3.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Joly P. The use of methotrexate alone or in combination with low doses of oral corticosteroids in the treatment of alopecia totalis or universalis. J Am Acad Dermatol. 2006;55(4):632–6. https://doi.org/10.1016/j.jaad.2005.09.010.

    Article  PubMed  Google Scholar 

  146. Chartaux E, Joly P. Long-term follow-up of the efficacy of methotrexate alone or in combination with low doses of oral corticosteroids in the treatment of alopecia areata totalis or universalis. Ann Dermatol Venereol. 2010;137(8–9):507–13. https://doi.org/10.1016/j.annder.2010.06.031.

    Article  CAS  PubMed  Google Scholar 

  147. Rashidi T, Mahd AA. Treatment of persistent alopecia areata with sulfasalazine. Int J Dermatol. 2008;47(8):850–2. https://doi.org/10.1111/j.1365-4632.2008.03700.x.

    Article  PubMed  Google Scholar 

  148. Aghaei S. An uncontrolled, open label study of sulfasalazine in severe alopecia areata. Indian J Dermatol Venereol Leprol. 2008;74(6):611–3.

    Article  Google Scholar 

  149. Acikgoz G, Caliskan E, Tunca M, Yeniay Y, Akar A. The effect of oral cyclosporine in the treatment of severe alopecia areata. Cutan Ocul Toxicol. 2014;33(3):247–52. https://doi.org/10.3109/15569527.2013.839997.

    Article  CAS  PubMed  Google Scholar 

  150. Lai VWY, Chen G, Gin D, Sinclair R. Cyclosporine for moderate-to-severe alopecia areata: a double-blind, randomized, placebo-controlled clinical trial of efficacy and safety. J Am Acad Dermatol. 2019;81(3):694–701. https://doi.org/10.1016/j.jaad.2019.04.053.

    Article  CAS  PubMed  Google Scholar 

  151. Sakkas LI, Mavropoulos A, Bogdanos DP. Phosphodiesterase 4 inhibitors in immune-mediated diseases: mode of action, clinical applications, current and future perspectives. Curr Med Chem. 2017;24(28):3054–67. https://doi.org/10.2174/0929867324666170530093902.

    Article  CAS  PubMed  Google Scholar 

  152. Gilhar A, Keren A, Shemer A, Ullmann Y, Paus R. Blocking potassium channels (Kv1.3): a new treatment option for alopecia areata? J Invest Derm. 2013;133(8):2088–91. https://doi.org/10.1038/jid.2013.141.

    Article  CAS  PubMed  Google Scholar 

  153. Gilhar A, Keren A, Shemer A, d’Ovidio R, Ullmann Y, Paus R. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J Invest Derm. 2013;133(3):844–7. https://doi.org/10.1038/jid.2012.365.

    Article  CAS  PubMed  Google Scholar 

  154. Keren A, Shemer A, Ullmann Y, Paus R, Gilhar A. The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. J Dermatol Sci. 2014;77:74–6. https://doi.org/10.1016/j.jdermsci.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

  155. Magdaleno-Tapial J, Valenzuela-Oñate C, Sánchez-Carazo JL, Alegre-de MV. Improvement of alopecia areata with apremilast. Australas J Dermatol. 2019;60(2):144–5. https://doi.org/10.1111/ajd.12934.

    Article  PubMed  Google Scholar 

  156. Mikhaylov D, Pavel A, Yao C, Kimmel G, Nia J, Hashim P, et al. A randomized placebo-controlled single-center pilot study of the safety and efficacy of apremilast in subjects with moderate-to-severe alopecia areata. Arch Dermatol Res. 2019;311(1):29–36. https://doi.org/10.1007/s00403-018-1876-y.

    Article  CAS  PubMed  Google Scholar 

  157. Estebanez A, Estebanez N, Martin JM, Montesinos E. Apremilast in refractory alopecia areata. Int J Trichol. 2019;11(5):213–5. https://doi.org/10.4103/ijt.ijt_59_19.

    Article  Google Scholar 

  158. Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36. https://doi.org/10.1038/nrrheum.2015.167.

    Article  CAS  PubMed  Google Scholar 

  159. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28. https://doi.org/10.1146/annurev-med-051113-024537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Vincenti F, Tedesco Silva H, Busque S, O’Connell P, Friedewald J, Cibrik D, et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. American J Transplant: Official J American Soc Transplant American Soc Transplant Surg. 2012;12(9):2446–56. https://doi.org/10.1111/j.1600-6143.2012.04127.x.

    Article  CAS  Google Scholar 

  161. Liew SH, Nichols KK, Klamerus KJ, Li JZ, Zhang M, Foulks GN. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology. 2012;119(7):1328–35. https://doi.org/10.1016/j.ophtha.2012.01.028.

    Article  PubMed  Google Scholar 

  162. Papp KA, Menter A, Strober B, Langley RG, Buonanno M, Wolk R, et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, in the treatment of psoriasis: a phase 2b randomized placebo-controlled dose-ranging study. Br J Dermatol. 2012;167(3):668–77. https://doi.org/10.1111/j.1365-2133.2012.11168.x.

    Article  CAS  PubMed  Google Scholar 

  163. Strober B, Buonanno M, Clark JD, Kawabata T, Tan H, Wolk R, et al. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br J Dermatol. 2013;169(5):992–9. https://doi.org/10.1111/bjd.12517.

    Article  CAS  PubMed  Google Scholar 

  164. Ports WC, Khan S, Lan S, Lamba M, Bolduc C, Bissonnette R, et al. A randomized phase 2a efficacy and safety trial of the topical Janus kinase inhibitor tofacitinib in the treatment of chronic plaque psoriasis. Br J Dermatol. 2013;169(1):137–45. https://doi.org/10.1111/bjd.12266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mamolo C, Harness J, Tan H, Menter A. Tofacitinib (CP-690,550), an oral Janus kinase inhibitor, improves patient-reported outcomes in a phase 2b, randomized, double-blind, placebo-controlled study in patients with moderate-to-severe psoriasis. J Eur Acad Dermatol Venereol. 2014;28(2):192–203. https://doi.org/10.1111/jdv.12081.

    Article  CAS  PubMed  Google Scholar 

  166. Menter A, Papp KA, Tan H, Tyring S, Wolk R, Buonanno M. Efficacy of tofacitinib, an oral janus kinase inhibitor, on clinical signs of moderate-to-severe plaque psoriasis in different body regions. J Drugs Dermatol: JDD. 2014;13(3):252–6.

    CAS  PubMed  Google Scholar 

  167. Gilhar A, Schrum AG, Etzioni A, Waldmann H, Paus R. Alopecia areata: animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev. 2016;15(7):726–35. https://doi.org/10.1016/j.autrev.2016.03.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Xing L, Dai Z, Jabbari A, Cerise JE, Higgins CA, Gong W, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014;20(9):1043–9. https://doi.org/10.1038/nm.3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Craiglow BG, King BA. Killing two birds with one stone: oral tofacitinib reverses alopecia universalis in a patient with plaque psoriasis. J Invest Dermatol. 2014;134(12):2988–90. https://doi.org/10.1038/jid.2014.260.

    Article  CAS  PubMed  Google Scholar 

  170. Liu LY, Craiglow BG, Dai F, King BA. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol. 2017;76(1):22–8. https://doi.org/10.1016/j.jaad.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  171. Craiglow BG, Liu LY, King BA. Tofacitinib for the treatment of alopecia areata and variants in adolescents. J Am Acad Dermatol. 2017;76(1):29–32. https://doi.org/10.1016/j.jaad.2016.09.006.

    Article  CAS  PubMed  Google Scholar 

  172. Almutairi N, Nour TM, Hussain NH. Janus kinase inhibitors for the treatment of severe alopecia areata: an open-label comparative study. Dermatology. 2019;235(2):130–6. https://doi.org/10.1159/000494613.

    Article  CAS  PubMed  Google Scholar 

  173. Emer J. Platelet-rich plasma (PRP): current applications in dermatology. Skin Ther Lett. 2019;24(5):1–6.

    Google Scholar 

  174. Landesberg R, Roy M, Glickman RS. Quantification of growth factor levels using a simplified method of platelet-rich plasma gel preparation. J Oral Maxillofac Surg : Off J American Assoc Oral Maxillofac Surg. 2000;58(3):297–300. https://doi.org/10.1016/s0278-2391(00)90058-2.

    Article  CAS  Google Scholar 

  175. Singh B, Goldberg LJ. Autologous platelet-rich plasma for the treatment of pattern hair loss. Am J Clin Dermatol. 2016;17(4):359–67. https://doi.org/10.1007/s40257-016-0196-2.

    Article  PubMed  Google Scholar 

  176. Fan Y, Perez K, Dym H. Clinical uses of platelet-rich fibrin in oral and maxillofacial surgery. Dent Clin North America. 2020;64(2):291–303. https://doi.org/10.1016/j.cden.2019.12.012.

    Article  Google Scholar 

  177. Gentile P, Garcovich S, Bielli A, Scioli MG, Orlandi A, Cervelli V. The effect of platelet-rich plasma in hair regrowth: a randomized placebo-controlled trial. Stem Cells Transl Med. 2015;4(11):1317–23. https://doi.org/10.5966/sctm.2015-0107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Khatu SS, More YE, Gokhale NR, Chavhan DC, Bendsure N. Platelet-rich plasma in androgenic alopecia: myth or an effective tool. J Cutan Aesthet Surg. 2014;7(2):107–10. https://doi.org/10.4103/0974-2077.138352.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Khademi F, Tehranchinia Z, Abdollahimajd F, Younespour S, Kazemi-Bajestani SMR, Taheri K. The effect of platelet rich plasma on hair regrowth in patients with alopecia areata totalis: a clinical pilot study. Dermatol Ther. 2019;32(4):e12989. https://doi.org/10.1111/dth.12989.

    Article  PubMed  Google Scholar 

  180. Badran KW, Sand JP. Platelet-rich plasma for hair loss: review of methods and results. Fac Plast Surg Clin North America. 2018;26(4):469–85. https://doi.org/10.1016/j.fsc.2018.06.008.

    Article  Google Scholar 

  181. Schippinger G, Pruller F, Divjak M, Mahla E, Fankhauser F, Rackemann S, et al. Autologous platelet-rich plasma preparations: influence of nonsteroidal anti-inflammatory drugs on platelet function. Orthop J Sports Med. 2015;3(6):2325967115588896. https://doi.org/10.1177/2325967115588896.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the publication.

Corresponding author

Correspondence to A. Sterkens.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sterkens, A., Lambert, J. & Bervoets, A. Alopecia areata: a review on diagnosis, immunological etiopathogenesis and treatment options. Clin Exp Med 21, 215–230 (2021). https://doi.org/10.1007/s10238-020-00673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00673-w

Keywords

Navigation