Skip to main content

Advertisement

Log in

Increased levels of circulating fibroblast growth factor 21 in children with Kawasaki disease

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the serum levels of fibroblast growth factor 21 (FGF21) in children with acute Kawasaki disease (KD) and to investigate its relationship with coronary artery lesions (CALs). Blood samples from 58 children with KD before intravenous immunoglobulin treatment and from 28 healthy children as control group were collected. Serum FGF21 levels in all participants were measured using enzyme-linked immunosorbent assay, and clinical parameters were tested in all KD patients. Serum FGF21 levels were significantly increased in acute KD patients as compared to the control group. Serum levels of FGF21 were substantially higher in the group of KD patients with CALs (KD-CALs) than in KD patients without CALs (KD-NCALs). Positive relationships between serum levels of FGF21 and percentage of leukomonocytes (L %), C-reactive protein, activated partial thromboplastin time and D-dimer were observed in KD patients. Furthermore, serum FGF21 levels were negatively correlated with red blood cell counts, hemoglobin (Hb), percentage of neutrophils (N %) and albumin. Serum level of FGF21 is associated with inflammation and coagulation. The paradoxical increase in serum FGF21 in acute KD patients may indicate a protective compensatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naoe S, Takahashi K, Masuda H, Tanaka N. Kawasaki disease. With particular emphasis on arterial lesions. Acta Pathol Jpn. 1991;41(11):785–97.

    CAS  PubMed  Google Scholar 

  2. Kato H, Sugimura T, Akagi T, et al. Long-term consequences of Kawasaki disease. A 10- to 21-year follow-up study of 594 patients. Circulation. 1996;94(6):1379–85.

    Article  CAS  PubMed  Google Scholar 

  3. Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet. 2008;40(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  4. Shimizu C, Jain S, Davila S, et al. Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet. 2011;4(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  5. Tian J, An X, Niu L. Correlation between nf-κb signal pathway-mediated caspase-4 activation and Kawasaki disease. Exp Ther Med. 2017;13(6):3333–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoshida LS, Tsunawaki S. Expression of NADPH oxidases and enhanced H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha. Int Immunopharmacol. 2008;8(10):1377–85.

    Article  CAS  PubMed  Google Scholar 

  7. Miura M, Garcia FL, Crawford SE, Rowley AH. Cell adhesion molecule expression in coronary artery aneurysms in acute Kawasaki disease. Pediatr Infect Dis J. 2004;23(10):931–6.

    Article  PubMed  Google Scholar 

  8. Matsubara T, Ichiyama T, Furukawa S. Immunological profile of peripheral blood lymphocytes and monocytes/macrophages in Kawasaki disease. Clin Exp Immunol. 2005;141(3):381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lago F, Dieguez C, Gómez-Reino J, Gualillo O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 2007;18(3–4):313–25.

    Article  CAS  PubMed  Google Scholar 

  10. Shimada K, Miyazaki T, Daida H. Adiponectin and atherosclerotic disease. Clin Chim Acta. 2004;344(1–2):1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Mocan Hognogi LD, Goidescu CM, Farcaş AD. Usefulness of the adipokines as biomarkers of ischemic cardiac dysfunction. Dis Mark. 2018;2018:3406028.

    Google Scholar 

  12. Jose VJ, Mariappan P, George PV, Selvakumar D. Serum leptin levels in acute myocardial infarction. Indian Heart J. 2005;57(1):39–43.

    PubMed  Google Scholar 

  13. Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20(11):563–9.

    Article  CAS  PubMed  Google Scholar 

  14. Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27(9):3417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010;342(1):1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kokkinos J, Tang S, Rye KA, Ong KL. The role of fibroblast growth factor 21 in atherosclerosis. Atherosclerosis. 2017;257:259–65.

    Article  CAS  PubMed  Google Scholar 

  17. Tanajak P, Chattipakorn SC, Chattipakorn N. Effects of fibroblast growth factor 21 on the heart. J Endocrinol. 2015;227(2):R13–30.

    Article  CAS  PubMed  Google Scholar 

  18. Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.

    Article  CAS  PubMed  Google Scholar 

  19. Liu R, He B, Gao F, Liu Q, Yi Q. Relationship between adipokines and coronary artery aneurysm in children with Kawasaki disease. Transl Res. 2012;160(2):131–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ayusawa M, Sonobe T, Uemura S, et al. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int. 2005;47(2):232–4.

    Article  PubMed  Google Scholar 

  21. Manlhiot C, Millar K, Golding F, et al. Improved classification of coronary artery abnormalities based only on coronary artery Z-scores after Kawasaki disease. Pediatr Cardiol. 2010;31(2):242–9.

    Article  PubMed  Google Scholar 

  22. Iglesias P, Selgas R, Romero S, Díez JJ. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur J Endocrinol. 2012;167(3):301–9.

    Article  CAS  PubMed  Google Scholar 

  23. Roth J, Szulc AL, Danoff A. Energy, evolution, and human diseases: an overview. Am J Clin Nutr. 2011;93(4):875S–83S.

    Article  CAS  PubMed  Google Scholar 

  24. Wang XM, Song SS, Xiao H, Gao P, Li XJ, Si LY. Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells. Cell Physiol Biochem. 2014;34(3):658–71.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu W, Wang C, Liu L, et al. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo. Can J Physiol Pharmacol. 2014;92(11):927–35.

    Article  CAS  PubMed  Google Scholar 

  26. Miyazaki Y, Saita E, Kishimoto Y, et al. Low plasma levels of fibroblast growth factor-21 in patients with peripheral artery disease. J Atheroscler Thromb. 2018;25(9):821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARγ agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology. 2012;153(1):329–38.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng J, Su X, Qiao L, Zhai C, Chen W. Circulating level of fibroblast growth factor 21 is independently associated with the risks of unstable angina pectoris. Biosci Rep. 2018;38(5):1.

    CAS  Google Scholar 

  29. Yu Y, He J, Li S, et al. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-κB signaling pathway. Int Immunopharmacol. 2016;38:144–52.

    Article  CAS  PubMed  Google Scholar 

  30. Bell DM, Brink EW, Nitzkin JL, et al. Kawasaki syndrome: description of two outbreaks in the United States. N Engl J Med. 1981;304(26):1568–75.

    Article  CAS  PubMed  Google Scholar 

  31. Nigro G, Zerbini M, Krzysztofiak A, et al. Active or recent parvovirus B19 infection in children with Kawasaki disease. Lancet. 1994;343(8908):1260–1.

    Article  CAS  PubMed  Google Scholar 

  32. Li JY, Wang N, Khoso MH, et al. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation. 2018;41(3):751–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kim EK, Lee Sh, Jhun JY, et al. Metformin prevents fatty liver and improves balance of white/brown adipose in an obesity mouse model by inducing FGF21. Mediators Inflamm. 2016;2016:5813030.

    PubMed  PubMed Central  Google Scholar 

  34. Vieira JM, Norman S, Villa Del Campo C, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J Clin Invest. 2018;128(8):3402–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Koyanagi H, Nakayama Y, Yanagawa H. Lower level of serum potassium and higher level of C-reactive protein as an independent risk factor for giant aneurysms in Kawasaki disease. Acta Paediatr. 1998;87:32–6.

    Article  CAS  PubMed  Google Scholar 

  36. Su Y, Feng S, Luo L, Liu R, Yi Q, et al. Association between IL-35 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med. 2019;19(1):87–92.

    Article  CAS  PubMed  Google Scholar 

  37. Hulejová H, Andrés Cerezo L, Kuklová M, et al. Novel adipokine fibroblast growth factor 21 is increased in rheumatoid arthritis. Physiol Res. 2012;61(5):489–94.

    PubMed  Google Scholar 

  38. Lin Z, Zhou Z, Liu Y, et al. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS ONE. 2011;6(4):e18398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li Y, Huang J, Jiang Z, Jiao Y, Wang H. FGF21 inhibitor suppresses the proliferation and migration of human umbilical vein endothelial cells through the eNOS/PI3K/AKT pathway. Am J Transl Res. 2017;9(12):5299–307.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan J, Wang J, Huang H, et al. Fibroblast growth factor 21 delayed endothelial replicative senescence and protected cells from H2O2-induced premature senescence through SIRT1. Am J Transl Res. 2017;9(10):4492–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Si F, Wu Y, Gao F, Feng S, Liu R, Yi Q. Relationship between IL-27 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med. 2017;17(4):451–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ong KL, Januszewski AS, O’Connell R, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. Diabetologia. 2015;58(3):464–73.

    Article  CAS  PubMed  Google Scholar 

  43. Takeda Y, Fujita S, Ikemoto T, et al. The relationship of fibroblast growth factors 21 and 23 and α-Klotho with platelet activity measured by platelet volume indices. Clin Chem Lab Med. 2015;53(10):1569–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 81500273.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qijian Yi or Pengfei Guo.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Ethical approval

This present study was approved by the Ethics Committee of Children’s Hospital, Chongqing Medical University.

Informed consent

Informed consent was obtained from guardians of all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Pei, Q., Feng, S. et al. Increased levels of circulating fibroblast growth factor 21 in children with Kawasaki disease. Clin Exp Med 19, 457–462 (2019). https://doi.org/10.1007/s10238-019-00577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-019-00577-4

Keywords

Navigation