Skip to main content

Advertisement

Log in

Association between IL-35 and coronary arterial lesions in children with Kawasaki disease

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

A Correction to this article was published on 31 August 2018

This article has been updated

Abstract

Kawasaki disease (KD) arises due to the acute inflammation and immune system dysfunction. This study investigated the relationship between the serum level of IL-35 and coronary artery lesions (CALs) in patients with KD. We obtained blood samples from 90 children with KD before intravenous immunoglobulin therapy. Levels of IL-35, IL-6, IL-17A, IL-10, MCP-1 and VEGF were measured in 190 cases, including 4 groups: KD with coronary arterial lesions (n = 46), KD without coronary arteries lesions (n = 44), febrile control group (FC, n = 40) and the normal control group (NC, n = 60). White blood cell counts (WBC), red blood cell counts (RBC), hemoglobin, platelet, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and procalcitonin were tested in all subjects. Levels of IL-35, RBC and hemoglobin significantly decreased, and IL-6, IL-17A, IL-10, MCP-1 and VEGF were significantly elevated in the KD group compared with febrile and control groups. IL-35 serum level even decreased, and ESR, IL-6, MCP-1 and VEGF increased in the KD patients with CALs. Serum levels of IL-35 in KD patients were negatively associated with WBC, CRP, IL-6, IL-17A, IL-10, MCP-1 and VEGF in children with KD. IL-35 may have the effect on inhibiting inflammatory process in KD and further preventing KD patients from coronary artery lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 31 August 2018

    The article Association between IL‑35 and coronary arterial lesions in children with Kawasaki disease, written by Ya Su, Siqi Feng, Li Luo, Ruixi Liu and Qijian Yi, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 27 July 2018 with open access.

References

  1. Kawasaki T, Kosaki F, Okawa S, et al. A new infantile acute febrile mucocutaneous lymph node syndrome (MCLS) prevailing in Japan. Pediatrics. 1974;54:271–6.

    CAS  PubMed  Google Scholar 

  2. Kato H, Koike S, Yamamoto M, et al. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr. 1975;86:892–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rowley AH, Shulman ST. Pathogenesis and management of Kawasaki disease. Expert Rev Anti Infect Ther. 2010;8:197–203.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burns JC, Glode MP. Kawasaki syndrome. Lancet. 2004;364:533–44.

    Article  PubMed  Google Scholar 

  5. Guo MMH, Tseng WN, Ko CH, et al. Th17- and Treg-related cytokine and mRNA expression are associated with acute and resolving Kawasaki disease. Allergy. 2015;70:310–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cumming C, McCartyh P, van Hoff J, et al. Kawasaki disease associated with reactive hemophagocytic lymphohistiocytosis. Pediatr Infect Dis J. 2008;27(12):1116–8.

    Article  Google Scholar 

  7. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kempe S, Heinz P, Kokai E, et al. Epsteinbarr virus-induced gene-3 is expressed in human atheroma plaques. Am J Pathol. 2009;175:440–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Mai J, Virtue A, et al. IL-35 is a novel responsive antiinflammatory cytokine—a new system of categorizing anti-inflammatory cytokines. PLoS ONE. 2012;7:e33628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bettini M, Castellaw AH, Lennon GP, et al. Prevention of autoimmune diabetes by ectopic pancreatic β-cell expression of interleukin-35. Diabetes. 2012;61:1519–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaturvedi V, Collison LW, Guy CS, et al. Cutting edge: human regulatory T cells require IL-35 to mediate suppression and infectious tolerance. J Immunol. 2011;186:6661–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niedbala W, Wei XQ, Cai B, et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T cells and suppression of Th17 cells. Eur J Immunol. 2007;37:3021–9.

    Article  PubMed  Google Scholar 

  13. Lin Y, Huang Y, Lu Z, et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS ONE. 2012;7(12):e52490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008). Circ J. 2010;74:1989–2020.

    Article  Google Scholar 

  15. Japan Kawasaki Disease Research Committee. Report of subcommittee on standardization of diagnostic criteria and reporting of coronary artery lesions in Kawasaki disease. Tokyo: Ministry of Health and Welfare; 1984.

    Google Scholar 

  16. Wirtz S, Billmeier U, Mchedlidze T, et al. Interleukin-35 mediates mucosal immune responses that protect against T-cell-dependent colitis. Gastroenterology. 2011;141(5):1875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zandian M, Mott KR, Allen SJ, et al. Use of cytokine immunotherapy to block CNS demyelination induced by a recombinant HSV-1 expressing IL-2. Gene Ther. 2011;18:734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang CH, Loo EX, Kuo IC, et al. Airway inflammation and IgE production induced by dust mite allergen-specific memory/effector Th2 cell line can be effectively attenuated by IL-35. J Immunol. 2011;187:462–71.

    Article  CAS  PubMed  Google Scholar 

  19. Workman CJ, Szymczak-Workman AL, Collison LW, et al. The development and function of regulatory T cells. Cell Mol Life Sci. 2009;66:2603–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol. 2010;159:109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia S, Li C, Wang G, et al. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin Exp Immunol. 2010;162:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laan M, Cui ZH, Hoshino H, et al. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol. 1999;162:2347–52.

    CAS  PubMed  Google Scholar 

  23. Afzali B, Mitchell P, Lechler RI, et al. Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells. Clin Exp Immunol. 2010;159:120–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nakano S, Morimoto S, Suzuki S, et al. Immunoregulatory role of IL-35 in T cells of patients with rheumatoid arthritis. Rheumatology (Oxford). 2015;54:1498–506.

    Article  Google Scholar 

  25. Yang J, Yang M, Htut TM, et al. Epstein-Barr virus-induced gene 3 negatively regulates IL-17, IL-22 and ROR gamma t. Eur J Immunol. 2008;38:1204–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lalani I, Bhol K, Ahmed AR. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol. 1997;79(6):469–83.

    Article  CAS  PubMed  Google Scholar 

  27. Kochetkova I, Golden S, Holderness K, et al. IL-35 stimulation of CD39 + regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol. 2010;184:7144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leonard EJ, Yoshimura T. Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today. 1990;11:97–101.

    Article  CAS  PubMed  Google Scholar 

  29. Matsushima K, Larsen CG, Dubois GC, et al. Purification and characterization of a novel monocyte chemotactic and activating actor produced by a human myelomonocytic cell line. J Exp Med. 1985;169:1485–90.

    Article  Google Scholar 

  30. Terai M, Jibiki T, Harada A, et al. Dramatic decrease of circulating levels of monocyte chemoattractant protein-1 in kawasaki disease after gamma globulin treatment. J Leukoc Biol. 1999;65:566–72.

    Article  CAS  PubMed  Google Scholar 

  31. Asano T, Ogawa S. Expression of monocyte chemoattractant protein-1 in Kawasaki disease: the anti-inflammatory effect of gamma globulin therapy. Scand J Immunol. 2000;51(1):98–103.

    Article  CAS  PubMed  Google Scholar 

  32. Filková M, Vernerová Z, Hulejová H, et al. Pro-inflammatory effects of interleukin-35 in rheumatoid arthritis. Cytokine. 2015;73:36–43.

    Article  CAS  PubMed  Google Scholar 

  33. Koyanagi H, Nakayama Y, Yanagawa H. Lower level of serum potassium and higher level of C-reactive protein as an independent risk factor for giant aneurysms in Kawasaki disease. Acta Paediatr. 1998;87:32–6.

    Article  CAS  PubMed  Google Scholar 

  34. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest. 1989;84:1470–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leung DYW, Cachianes G, Kuang W-J, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246:1306–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ohno T, Yuge T, Kariyazono H, et al. Serum hepatocyte growth factor combined with vascular endothelial growth factor as a predictive indicator for the occurrence of coronary artery lesions in Kawasaki disease. Eur J Pediatr. 2002;161:105–11.

    Article  CAS  PubMed  Google Scholar 

  37. Hamamichi Y, Ichida F, Yu X, et al. Neutrophils and mononuclear cells express vascular endothelial growth factor in acute Kawasaki disease: its possible role in progression of coronary artery lesions. Pediatr Res. 2001;49:74–80.

    Article  CAS  PubMed  Google Scholar 

  38. Suqin W, Li Y, Li Y. Interleukin-35 attenuates collagen-induced arthritis through suppression of vascular endothelial growth factor and its receptors. Int Immunopharmacol. 2016;34:71–7.

    Article  CAS  Google Scholar 

  39. Jiang S, Li Y, Lin T, et al. IL-35 inhibits angiogenesis through VEGF/Ang2/Tie2 pathway in rheumatoid arthritis. Cell Physiol Biochem. 2016;40:1105–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 81500273.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruixi Liu or Qijian Yi.

Ethics declarations

Conflict of interest

All authors have no actual or potential conflicts of interest with other people or organizations to this work.

Ethical approval

The study protocol was approved by the Ethics Committee of Children’s Hospital of Chongqing Medicine University, and written informed consent forms were obtained from the parents of all subjects.

Additional information

The original version of this article was revised: due to a retrospective Open Access cancellation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Feng, S., Luo, L. et al. Association between IL-35 and coronary arterial lesions in children with Kawasaki disease. Clin Exp Med 19, 87–92 (2019). https://doi.org/10.1007/s10238-018-0513-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-018-0513-6

Keywords

Navigation