Skip to main content

Advertisement

Log in

Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors

  • Review Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

The human thymus supports the production of self-tolerant T cells with competent and regulatory functions. Various cellular components of the thymic microenvironment such as thymic epithelial cells (TEC) and dendritic cells play essential roles in thymic T cell differentiation. The multiple cellular events occurring during thymic T cell and TEC differentiation involve proteins regulating cell cycle and apoptosis. Dysregulation of the cell cycle and apoptosis networks is involved in the pathogenesis of thymic epithelial tumors (TET) which are divided into two broad categories, thymomas and thymic carcinomas. The present review focuses on the usefulness of the analysis of the expression patterns of major cell cycle and apoptosis regulators in order to gain insight in the histophysiology of thymus and the histopathology, the clinical behavior and the biology of TET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. 2009;9:153–66.

    Article  CAS  PubMed  Google Scholar 

  2. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–93.

    Article  CAS  PubMed  Google Scholar 

  3. Booth LA, Tavallai S, Hamed HA, Cruickshanks N, Dent P. The role of cell signalling in the crosstalk between autophagy and apoptosis. Cell Signal. 2014;26:549–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Maskey D, Yousefi S, Schmid I, et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 2013;. doi:10.1038/ncomms3130.

    PubMed  PubMed Central  Google Scholar 

  5. Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol. 2014;35:14–23.

    Article  PubMed  CAS  Google Scholar 

  6. Stevens JB, Abdallah BY, Liu G, et al. Heterogeneity of cell death. Cytogenet Genome Res. 2013;139:164–73.

    Article  CAS  PubMed  Google Scholar 

  7. Hale AN, Ledbetter DJ, Gawriluk TR, Rucker EB 3rd. Autophagy: regulation and role in development. Autophagy. 2013;9:951–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aichinger M, Wu C, Nedjic J, Klein L. Macroautophagy substrates are loaded onto MHC class II of medullary thymic epithelial cells for central tolerance. J Exp Med. 2013;210:287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014;15:81–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Pflaum J, Schlosser S, Müller M. p53 family and cellular stress responses in cancer. Front Oncol. 2014;. doi:10.3389/fonc.2014.00285.

    PubMed  PubMed Central  Google Scholar 

  11. Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol. 2015;. doi:10.1016/j.bcp.2014.12.018.

    PubMed  Google Scholar 

  12. Hernandez JB, Newton RH, Walsh CM. Life and death in the thymus cell death signaling during T cell development. Curr Opin Cell Biol. 2010;22:865–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  CAS  PubMed  Google Scholar 

  14. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. Autophagic cell death and cancer. Int J Mol Sci. 2014;15:3145–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Galluzzi L, Vitale I, Abrams JM, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2012;19:107–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta. 2013;1833:3448–59.

    Article  CAS  PubMed  Google Scholar 

  17. Li K, Wu D, Chen X, et al. Current and emerging biomarkers of cell death in human disease. Biomed Res Int. 2014;. doi:10.1155/2014/690103.

    Google Scholar 

  18. Rezzani R, Bonomini F, Rodella LF. Histochemical and molecular overview of the thymus as site for T-cell development. Prog Histochem Cytochem. 2008;43:73–120.

    Article  CAS  PubMed  Google Scholar 

  19. Sun L, Li H, Luo H, Zhao Y. Thymic epithelial cell development and its dysfunction in human diseases. Biomed Res Int. 2014;. doi:10.1155/2014/206929.

    Google Scholar 

  20. Papoudou-Bai A, Bai M, Doukas M, et al. Immunohistological characterization of thymic dendritic cells. In Vivo. 2012;26:985–92.

    CAS  PubMed  Google Scholar 

  21. Klein L, Hinterberger M, von Rohrscheidt J, Aichinger M. Autonomous versus dendritic cell-dependent contributions of medullary thymic epithelial cells to central tolerance. Trends Immunol. 2011;32:188–93.

    Article  CAS  PubMed  Google Scholar 

  22. Bronietzki AW, Schuster M, Schmitz I. Autophagy in T-cell development, activation and differentiation. Immunol Cell Biol. 2015;93:25–34.

    Article  CAS  PubMed  Google Scholar 

  23. Girard N. Thymic epithelial tumours: from basic principles to individualised treatment strategies. Eur Respir Rev. 2013;22:75–87.

    Article  PubMed  Google Scholar 

  24. Serpico D, Trama A, Haspinger ER, et al. Available evidence and new biological perspectives on medical treatment of advanced thymic epithelial tumors. Ann Oncol. 2014;. doi:10.1093/annonc/mdu527.

    PubMed  Google Scholar 

  25. Weissferdt A, Wistuba I, Moran CA. Molecular aspects of thymic carcinoma. Lung Cancer. 2012;78:127–32.

    Article  PubMed  Google Scholar 

  26. Huang B, Belharazem D, Li L, et al. Anti-apoptotic signature in thymic squamous cell carcinomas—functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c. Fron Oncol. 2013;. doi:10.3389/fonc.2013.00316.

    Google Scholar 

  27. Ströbel P, Hartmann E, Rosenwald A, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64:557–66.

    Article  PubMed  Google Scholar 

  28. Kelly RJ, Petrini I, Rajan A, Wang Y, Giaccone G. Thymic malignancies. From clinical management to targeted therapies. J Clin Oncol. 2011;29:4820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marx A, Ströbel P, Badve SS, et al. ITMIG consensus statement on the use of the WHO histological classification of thymoma and thymic carcinoma: refined definitions, histological criteria and reporting. J Thorac Oncol. 2014;9:596–611.

    Article  CAS  PubMed  Google Scholar 

  30. Stefanaki S, Rontogianni D, Kouvidou C, et al. Immunohistochemical expression of bcl2, p53, mdm2 and p21/waf-1 proteins in thymomas. Histopathology. 1997;30:549–55.

    Article  CAS  PubMed  Google Scholar 

  31. Kanavaros P, Stefanaki K, Rontogianni D, et al. Immunohistochemical expression of p53, p21/waf1, Rb, p16, cyclin D1, p27, Ki67, cyclin A, cyclin B1, bcl2, bax and bak proteins and apoptotic index in normal thymus. Histol Histopathol. 2001;16:1005–12.

    CAS  PubMed  Google Scholar 

  32. Bai M, Doukas M, Papoudou-Bai A, et al. Immunohistological analysis of cell cycle and apoptosis regulators in thymus. Ann Anat. 2013;195:159–65.

    Article  CAS  PubMed  Google Scholar 

  33. Zisis C, Rontogianni D, Stefanaki K, Bellenis I. Expression of cyclins D1, D3 and p27 in thymic epithelial tumors. Interact CardioVasc Thorac Surg. 2004;3:245–8.

    Article  PubMed  Google Scholar 

  34. Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM, Jin YT. Immunohistochemical localization of Mcl-1 and bcl-2 proteins in thymic epithelial tumours. Histopathology. 1996;29:541–7.

    Article  CAS  PubMed  Google Scholar 

  35. Khoury T, Chandrasekhar R, Wilding G, Tan D, Cheney RT. Tumour eosinophilia combined with an immunohistochemistry panel is useful in the differentiation of type B3 thymoma from thymic carcinoma. Int J Exp Pathol. 2011;92:87–96.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hayashi A, Fumon T, Miki Y, Sato H, Yoshino T, Takahashi K. The evaluation of immunohistochemical markers and thymic cortical microenvironmental cells in distinguishing thymic carcinoma from type B3 thymoma or lung squamous cell carcinoma. J Clin Exp Hematopathol. 2013;53:9–19.

    Article  Google Scholar 

  37. Engel P, Francis D, Graem N. Expression of bcl-2 in fetal thymus, thymomas and thymic carcinomas. Association with p53 expression and review of the literature. APMIS. 1998;106:449–55.

    Article  CAS  PubMed  Google Scholar 

  38. Hirabayashi H, Fujii Y, Sakagushi M, et al. p16/INK4, pRB, p53 and cyclin D1 expression and hypermethylation of CDKN2 gene in thymoma and thymic carcinoma. Int J Cancer. 1997;73:639–44.

    Article  CAS  PubMed  Google Scholar 

  39. Ichimiya S, Kojima T, Momota H, et al. p73 is expressed in human thymic epithelial cells. J Histochem Cytochem. 2002;50:455–62.

    Article  CAS  PubMed  Google Scholar 

  40. Nagahama H, Hatakeyama S, Nakayama K, et al. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat Embryol. 2001;203:77–87.

    Article  CAS  PubMed  Google Scholar 

  41. Kitada S, Krajewska M, Zhang X, et al. Expression and location of pro-apoptotic Bcl-2 family protein BAD in normal human tissues and tumor cell lines. Am J Pathol. 1998;152:51–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Krajewski S, Krajewska M, Reed JC. Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res. 1994;56:2849–55.

    Google Scholar 

  43. Krajewski S, Krajewska M, Shabaik A, Miyashita T, Wang HG, Reed JC. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol. 1994;145:1323–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Krajewski S, Bodrug S, Krajewska M, et al. Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol. 1995;146:1309–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Vischioni B, van der Valk P, Span SW, Kruyt FA, Rodriguez JA, Giaccone G. Expression and localization of inhibitor of apoptosis proteins in normal human tissues. Hum Pathol. 2006;37:78–86.

    Article  CAS  PubMed  Google Scholar 

  46. Moulian N, Bidault J, Planche C, Berrih-Aknin S. Two signaling pathways can increase Fas expression in human thymocytes. Blood. 1998;92:1297–304.

    CAS  PubMed  Google Scholar 

  47. Moulian N, Renvoize C, Desodt C, Serraf A, Berrich-Aknin S. Functional Fas in human thymic epithelial cells. Blood. 1999;93:2660–70.

    CAS  PubMed  Google Scholar 

  48. Tateyama H, Eimoto T, Tada T, et al. p53 protein expression and p53 gene mutation in thymic epithelial tumors. An immunohistochemical and DNA sequencing study. Am J Clin Pathol. 1995;104:375–81.

  49. Chen FF, Yan JJ, Jin YT, Su IJ. Detection of bcl-2 and p53 in thymoma: expression of bcl-2 as a reliable marker of tumor aggressiveness. Hum Pathol. 1996;27:1089–92.

    Article  CAS  PubMed  Google Scholar 

  50. Pich A, Chiarle R, Chiusa L, Ponti R, Geuna M, Palestro G. p53 expression and proliferative activity predict survival in non-invasive thymomas. Int J Cancer. 1996;69:180–3.

    Article  CAS  PubMed  Google Scholar 

  51. Weirich G, Schneider P, Fellbaum C, et al. p53 alterations in thymic epithelial tumours. Virchows Arch. 1997;431:17–23.

    Article  CAS  PubMed  Google Scholar 

  52. Pan CC, Chen PCH, Wang LS, Lee JL, Chiang H. Expression of apoptosis-related markers and HER-2/neu in thymic epithelial tumours. Histopathology. 2003;43:165–72.

    Article  PubMed  Google Scholar 

  53. Park SH, Kim HK, Kim H, Ro JY. Apoptosis in thymic epithelial tumors. Pathol Res Pract. 2002;198:461–7.

    Article  PubMed  Google Scholar 

  54. Penault-Llorca F, Bouabdallah R, Devilard E, et al. Analysis of BAX expression in human tissues using the anti-BAX, 4F11 monoclonal antibody on paraffin sections. Pathol Res Pract. 1998;194:457–64.

    Article  CAS  PubMed  Google Scholar 

  55. Chilosi M, Iannucci A, Menestrina F, et al. Immunohistochemical evidence of active thymocyte proliferation in thymoma. Its possible role in the pathogenesis of autoimmune diseases. Am J Pathol. 1987;128:464–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Alexiev BA, Drachenberg CB, Burke AP. Thymomas: a cytological and immunohistochemical study, with emphasis on lymphoid and neuroendocrine markers. Diagn Pathol. 2007;12:1–10.

    Google Scholar 

  57. Kojika M, Ishii G, Yoshida J, et al. Immunohistochemical differential diagnosis between thymic carcinoma and type B3 thymoma: diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod Pathol. 2009;22:1341–50.

    Article  CAS  PubMed  Google Scholar 

  58. Spaulding B, Pan D, Ghadersohi A, et al. Characterization of the 12C4 survivin monoclonal antibody and insight into the expression of survivin in human adult tissues. Histopathology. 2006;49:622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hino N, Kondo K, Miyoshi T, Uyama T, Monden Y. High frequency of p53 protein expression in thymic carcinoma but not in thymoma. Br J Cancer. 1997;76:1361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu M, Sun K, Gil J, Gan L, Burstein DE. Immunohistochemical detection of p63 and XIAP in thymic hyperplasia and thymomas. Am J Clin Pathol. 2009;131:689–93.

    Article  PubMed  Google Scholar 

  61. Pan CC, Ho DM, Chen WY, Huang CW, Chiang H. Ki67 labelling index correlates with stage and histology but not significantly with prognosis in thymoma. Histopathology. 1998;33:453–8.

    Article  CAS  PubMed  Google Scholar 

  62. Baldi A, Ambrogi V, Mineo D, et al. Analysis of cell cycle regulator proteins in encapsulated thymomas. Clin Cancer Res. 2005;15:5078–83.

    Article  Google Scholar 

  63. Dotto J, Pelosi G, Rosai J. Expression of p63 in thymomas and normal thymus. Am J Clin Pathol. 2007;127:415–20.

    Article  PubMed  Google Scholar 

  64. Hiroshima K, Iyoda A, Toyozaki T, et al. Proliferative activity and apoptosis in thymic epithelial neoplasms. Mod Pathol. 2002;15:1326–32.

    Article  PubMed  Google Scholar 

  65. Petrini I, Meltzer PS, Zucali PA, et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012;19(3):e351.

    Article  CAS  Google Scholar 

  66. Khoury T, Arshad A, Bogner P, et al. Apoptosis-related (survivin, Bcl-2), tumor suppressor gene (p53), proliferation (Ki-67), and non-receptor tyrosine kinase (Src) markers expression and correlation with clinicopathologic variables in 60 thymic neoplasms. Chest. 2009;136:220–8.

    Article  CAS  PubMed  Google Scholar 

  67. Yang WI, Efird JT, Quintanilla-Martinez L, Choi N, Harris NL. Cell kinetic study of thymic epithelial tumors using PCNA (PC10) and Ki-67 (MIB-1) antibodies. Hum Pathol. 1996;27:70–6.

    Article  CAS  PubMed  Google Scholar 

  68. Ma Y, Li Q, Cui W, et al. Expression of c-Jun, p73, Casp9, and N-ras in thymic epithelial tumors: relationship with the current WHO classification systems. Diagn Pathol. 2010;14:120–7.

    Google Scholar 

  69. Mineo TC, Ambrogi V, Mineo D, Baldi A. Long-term disease free survival of patients with radically resected thymomas: relevance of cell-cycle protein expression. Cancer. 2005;104:2063–71.

    Article  CAS  PubMed  Google Scholar 

  70. Mineo TC, Ambrogi V, Baldi A, Pompeo E, Mineo D. Recurrent intrathoracic thymomas: potential prognostic importance of cell-cycle protein expression. J Thorac Cardiovasc Surg. 2009;138:40–5.

    Article  PubMed  Google Scholar 

  71. Tateyama H, Eimoto T, Tada T, Inagaki H, Hattori H, Takino H. Apoptosis, bcl-2 protein, and Fas antigen in thymic epithelial tumors. Mod Pathol. 1997;10:983–91.

    CAS  PubMed  Google Scholar 

  72. Nielsen GP, Stemmer-Rachamimov AO, Shaw J, Roy JE, Koh J, Louis DN. Immunohistochemical survey of p16/1NK4A expression in normal human adult and infant tissues. Lab Invest. 1999;79:1137–43.

    CAS  PubMed  Google Scholar 

  73. Chilosi M, Doglioni C, Yan Z, et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol. 1998;152:209–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Shiraishi J, Utsuyama M, Seki S, et al. Essential microenvironment for thymopoiesis is preserved in human adult and aged thymus. Clin Dev Immunol. 2003;10:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM. The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol. 2007;19:1201–11.

    Article  CAS  PubMed  Google Scholar 

  76. Shakib S, Desanti GE, Jenkinson DW, Parnell SM, Jenkinson EJ, Anderson G. Checkpoints in the development of thymic cortical epithelial cells. J Immunol. 2009;182:130–7.

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez-Puebla ML, LaCava M, Miliani De Marval PL, Jorcano JL, Richie ER, Conti CJ. Cyclin D2 overexpression in transgenic mice induces thymic and epidermal hyperplasia whereas cyclin D3 expression results only in epidermal hyperplasia. Am J Pathol. 2000;157:1039–50.

  78. Robles AI, Larcher F, Whalin RB, et al. Expression of cyclin Dl in epithelial tissues of transgenic mice results in epidermal hyperproliferation and severe thymic hyperplasia. Proc Natl Acad Sci USA. 1996;93:7634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Scheijen B, Bronk M, van der Meer T, De Jong D, Bernards R. High incidence of thymic epithelial tumors in E2F2 transgenic mice. J Biol Chem. 2004;279:10476–83.

    Article  CAS  PubMed  Google Scholar 

  80. Williams O, Gil-Gomez G, Norton T, Kioussis D, Brady HJM. Activation of Cdk2 is a requirement for antigen-mediated thymic negative selection. Eur J Immunol. 2000;30:709–13.

    Article  CAS  PubMed  Google Scholar 

  81. Hiromura K, Pippin JW, Fero ML, Roberts JM, Shankland SJ. Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27 (Kip1). J Clin Invest. 1999;103:597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gorospe M, Cirielli C, Wang X, Seth P, Capogrossi MC, Holbrook NJ. p21(Waf1/Cip1) protects against p53-mediated apoptosis of human melanoma cell. Oncogene. 1997;14:929–35.

    Article  CAS  PubMed  Google Scholar 

  83. Uhrbom L, Nister M, Wastermark B. Induction of senescence in human malignant glioma cells by p16/INK4A. Oncogene. 1997;15:505–14.

    Article  CAS  PubMed  Google Scholar 

  84. Krisnamurthy J, Torrice C, Ramsey MR, et al. Ink4a/Arf expression is a biomarker of aging. J Clin Invest. 2004;114:1299–307.

    Article  Google Scholar 

  85. Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB. Architectural changes in the thymus of aging mice. Aging Cell. 2007;7:158–67.

    Article  CAS  Google Scholar 

  86. French LE, Wilson A, Hanhe M, Viard I, Tschopp J, McDonald HR. Fas ligand expression is restricted to nonlymphoid thymic components in situ. J Immunol. 1997;159:2196–202.

    CAS  PubMed  Google Scholar 

  87. Yajima N, Sakamaki K, Yonehara S. Age-related thymic involution is mediated by Fas on thymic epithelial cells. Int Immunol. 2004;16:1027–35.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang N, He YW. An essential role for c-FLIP in the efficient development of mature T lymphocytes. J Exp Med. 2005;202:395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ogasawara J, Suda T, Nagata S. Selective apoptosis of CD4+CD8+ thymocytes by the anti-Fas antibody. J Exp Med. 1995;181:485–91.

    Article  CAS  PubMed  Google Scholar 

  90. Jenkins M, Keir M, McCune JM. Fas is expressed early in human thymocyte development but does not transmit an apoptotic signal. J Immunol. 1999;163:1195–204.

    CAS  PubMed  Google Scholar 

  91. Resendez AR, Majo N, Segales J, et al. Apoptosis in normal lymphoid organs from healthy normal, conventional pigs at different ages detected by TUNEL and cleaved caspase-3 immunohistochemistry in paraffin-embedded tissues. Vet Immunol Immunopathol. 2004;99:203–13.

    Article  Google Scholar 

  92. Douek DC, Altmann DM. T-cell apoptosis and differential human leucocyte antigen class II expression in human thymus. Immunology. 2000;99:249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kataoka T, Ito M, Budd RC, Tschopp J, Nagai K. Expression level of c-FLIP versus Fas determines susceptibility to Fas ligand-induced cell death in murine thymoma EL-4 cells. Exp Cell Res. 2002;273:256–64.

    Article  CAS  PubMed  Google Scholar 

  94. Kobayashi Y, Yukiue H, Sasaki H, et al. Developmentally regulated expression of survivin in the human thymus. Hum Immunol. 2002;63:101–7.

    Article  CAS  PubMed  Google Scholar 

  95. Van der Horst A, Lens SM. Cell division: control of the chromosomal passenger complex in time and space. Chromosoma. 2014;123:25–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rathmell JC, Lindsten T, Zong WX, Cinalli RM, Thompson CB. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol. 2002;3:932–9.

    Article  CAS  PubMed  Google Scholar 

  97. Dunkle A, Dzhagalov I, He YW. Mcl-1 promotes survival of thymocytes by inhibition of Bak in a pathway separate from Bcl-2. Cell Death Differ. 2010;17:994–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Dzhagalov I, Dunkle A, He YW. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol. 2008;181:521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grillot DA, Merino R, Núñez G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med. 1995;182:1973–83.

    Article  CAS  PubMed  Google Scholar 

  100. Yang CY, Lin NH, Lee JM, et al. Promoter knock-in mutations reveal a role of mcl-1 in thymocyte-positive selection and tissue or cell lineage specific regulation of mcl-1 expression. J Immunol. 2009;182:2959–68.

    Article  CAS  PubMed  Google Scholar 

  101. Yokoyama T, Tanahashi M, Kobayashi Y, et al. The expression of Bcl-2 family proteins (Bcl-2, Bcl-x, Bax, Bak and Bim) in human lymphocytes. Immunol Lett. 2002;81:107–13.

    Article  CAS  PubMed  Google Scholar 

  102. Hutcheson J, Scatizzi JC, Bickel E, et al. Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med. 2005;201:1949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Candi E, Rufini A, Terrinoni A, et al. p63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci USA. 2007;104:11999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Senoo M, Pinto F, Crum CP, McKeon F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007;129:523–36.

    Article  CAS  PubMed  Google Scholar 

  105. Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development. 2006;133:1553–63.

    Article  CAS  PubMed  Google Scholar 

  106. Revest JM, Suniara RK, Kerr K, Owen JJ, Dickson C. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol. 2001;167:1954–61.

    Article  CAS  PubMed  Google Scholar 

  107. Dooley J, Erickson M, Larochelle WJ, Gillard GO, Farr AG. FGFR2IIIb signaling regulates thymic epithelial differentiation. Dev Dyn. 2007;236:3459–71.

    Article  CAS  PubMed  Google Scholar 

  108. Sarafian V, Marinova TT. Lysosomal membrane-associated glycoproteins are differentially expressed in acute and chronic human thymic involution. Acta Biol Hung. 2006;57:315–22.

    Article  PubMed  Google Scholar 

  109. Sarafian V, Marinova TT, Gulubova MV. Differential expression of LAMPs and ubiquitin in human thymus. APMIS. 2009;117:248–52.

    Article  CAS  PubMed  Google Scholar 

  110. Dice JF. Chaperone-mediated autophagy. Autophagy. 2007;3:295–9.

    Article  CAS  PubMed  Google Scholar 

  111. Uddin MN, Nishio N, Ito S, Suzuki H, Isobe K. Autophagic activity in thymus and liver during aging. Age. 2012;34:75–85.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Moran CA, Weissferdt A, Kalhor N, et al. Thymomas I: a clinicopathologic correlation of 250 cases with emphasis on the World Health Organization schema. Am J Clin Pathol. 2012;137:444–50.

    Article  PubMed  Google Scholar 

  113. Moran CA, Walsh G, Suster S, Kaiser L. Thymomas II: a clinicopathologic correlation of 250 cases with a proposed staging system with emphasis on pathologic assessment. Am J Clin Pathol. 2012;137:451–61.

    Article  PubMed  Google Scholar 

  114. Su XY, Wu WL, Liu N, Zhang SF, Li GD. Thymic epithelial tumors: a clinicopathologic study of 249 cases from a single institution. Int J Clin Exp Pathol. 2014;7:7760–7.

    PubMed  PubMed Central  Google Scholar 

  115. Baik S, Jenkinson EJ, Lane PJ, Anderson G, Jenkinson WE. Generation of both cortical and Aire(+) medullary thymic epithelial compartments from CD205(+) progenitors. Eur J Immunol. 2013;43:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peterson P, Laan M. Bipotency of thymic epithelial progenitors comes in sequence. Eur J Immunol. 2013;43:580–3.

    Article  CAS  PubMed  Google Scholar 

  117. Alexandropoulos K, Bonito AJ, Weinstein EG, Herbin O. Medullary thymic epithelial cells and central tolerance in autoimmune hepatitis development: novel perspective from a new mouse model. Int J Mol Sci. 2015;16:1980–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Alves NL, Takahama Y, Ohigashi I, et al. Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol. 2014;44:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol. 2011;23:190–7.

    Article  CAS  PubMed  Google Scholar 

  120. Anderson G, Takahama Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 2012;33:256–63.

    Article  CAS  PubMed  Google Scholar 

  121. Ströbel P, Helmreich M, Menioudakis G, et al. Paraneoplastic myasthenia gravis correlates with generation of mature naive CD4(+) T cells in thymomas. Blood. 2002;100:159–66.

    Article  PubMed  Google Scholar 

  122. Okumura M, Fujii Y, Shiono H, et al. Immunological function of thymoma and pathogenesis of paraneoplastic myasthenia gravis. Gen Thorac Cardiovasc Surg. 2008;56:143–50.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexandra Papoudou-Bai or Panagiotis Kanavaros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papoudou-Bai, A., Barbouti, A., Galani, V. et al. Expression of cell cycle and apoptosis regulators in thymus and thymic epithelial tumors. Clin Exp Med 16, 147–159 (2016). https://doi.org/10.1007/s10238-015-0344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-015-0344-7

Keywords

Navigation