Skip to main content
Log in

Computational study of the mechanical behavior of the astrocyte network and axonal compartments in the mouse optic nerve head

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Glaucoma is a blinding disease characterized by the degeneration of the retinal ganglion cell (RGC) axons at the optic nerve head (ONH). A major risk factor for glaucoma is the intraocular pressure (IOP). However, it is currently impossible to measure the IOP-induced mechanical response of the axons of the ONH. The objective of this study was to develop a computational modeling method to estimate the IOP-induced strains and stresses in the axonal compartments in the mouse astrocytic lamina (AL) of the ONH, and to investigate the effect of the structural features on the mechanical behavior. We developed experimentally informed finite element (FE) models of six mouse ALs to investigate the effect of structure on the strain responses of the astrocyte network and axonal compartments to pressure elevation. The specimen-specific geometries of the FE models were reconstructed from confocal fluorescent images of cryosections of the mouse AL acquired in a previous study that measured the structural features of the astrocytic processes and axonal compartments. The displacement fields obtained from digital volume correlation in prior inflation tests of the mouse AL were used to determine the displacement boundary conditions of the FE models. We then applied Gaussian process regression to analyze the effects of the structural features on the strain outcomes simulated for the axonal compartments. The axonal compartments experienced, on average, 6 times higher maximum principal strain but 1800 times lower maximum principal stress compared to those experienced by the astrocyte processes. The strains experienced by the axonal compartments were most sensitive to variations in the area of the axonal compartments. Larger axonal compartments that were more vertically aligned, closer to the AL center, and with lower local actin area fraction had higher strains. Understanding the factors affecting the deformation in the axonal compartments will provide insights into mechanisms of glaucomatous axonal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data and results generated from this study are presented in detail in the supplemental materials.

References

  • Bar-Kochba E, Toyjanova J, Andrews E et al (2015) A fast iterative digital volume correlation algorithm for large deformations. Exp Mech 55(1):261–274

    Article  Google Scholar 

  • Bellezza A, Hart R, Burgoyne C (2000) The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci 41(10):2991–3000

    Google Scholar 

  • Bonet J, Wood R (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Burgoyne C (2015) The morphological difference between glaucoma and other optic neuropathies. J Neuroophthalmol 35(1):S8

    Article  Google Scholar 

  • Campbell I, Coudrillier B, Mensah J et al (2015) Automated segmentation of the lamina cribrosa using frangi’s filter: a novel approach for rapid identification of tissue volume fraction and beam orientation in a trabeculated structure in the eye. J R Soc Interface 12(104):20141009

    Article  Google Scholar 

  • Choi H, Sun D, Jakobs T (2015) Astrocytes in the optic nerve head express putative mechanosensitive channels. Mol Vis 21(July):749–766

    Google Scholar 

  • Coudrillier B, Boote C, Quigley H et al (2013) Scleral anisotropy and its effects on the mechanical response of the optic nerve head. Biomech Model Mechanobiol 12(5):941–963

    Article  Google Scholar 

  • D’Errico J (2021) inpaint nans. https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans

  • Downs J, Roberts M, Burgoyne C, et al (2009) Multiscale finite element modeling of the lamina cribrosa microarchitecture in the eye. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp 4277–4280

  • Edwards M, Good T (2001) Use of a mathematical model to estimate stress and strain during elevated pressure induced lamina cribrosa deformation. Curr Eye Res 23(3):215–225

    Article  Google Scholar 

  • Elkington A, Inman C, Steart P et al (1990) The structure of the lamina cribrosa of the human eye: an immunocytochemical and electron microscopical study. Eye 4(1):42–57

    Article  Google Scholar 

  • Feola A, Nelson E, Myers J et al (2018) The impact of choroidal swelling on optic nerve head deformation. Invest Ophthalmol Vis Sci 59(10):4172–4181. https://doi.org/10.1167/iovs.18-24463

    Article  Google Scholar 

  • Forrester J, Dick A, McMenamin P et al (2020) The eye e-book: basic sciences in practice. Elsevier, New York

    Google Scholar 

  • Galle B, Ouyang H, Shi R et al (2010) A transversely isotropic constitutive model of excised guinea pig spinal cord white matter. J Biomech 43(14):2839–2843

    Article  Google Scholar 

  • Girard M, Downs J, Bottlang M et al (2009) Peripapillary and posterior scleral mechanics-Part II: experimental and inverse finite element characterization. J Biomech Eng 6:289

    Google Scholar 

  • Girard M, Downs J, Burgoyne C et al (2009) Peripapillary and posterior scleral mechanics-Part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng 3:21

    Google Scholar 

  • Gordon M, Beiser J, Brandt J et al (2002) The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720. https://doi.org/10.1001/archopht.120.6.714

    Article  Google Scholar 

  • Grytz R, Meschke G, Jonas J (2011) The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol 10(3):371–382

    Article  Google Scholar 

  • Grytz R, Meschke G, Jonas JB et al (2016) Glaucoma and structure-based mechanics of the lamina cribrosa at multiple scales. Springer, Boston, pp 93–122

    Google Scholar 

  • Guzman C, Jeney S, Kreplak L et al (2006) Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. J Mol Biol 360(3):623–630

    Article  Google Scholar 

  • Hua Y, Tong J, Ghate D et al (2017) Intracranial pressure influences the behavior of the optic nerve head. J Biomech Eng 139(3):638. https://doi.org/10.1115/1.4035406

    Article  Google Scholar 

  • Hua Y, Lu Y, Walker J et al (2022) Eye-specific 3D modeling of factors influencing oxygen concentration in the lamina cribrosa. Exp Eye Res 5:109105

    Article  Google Scholar 

  • Investigators TA (2000) The advanced glaucoma intervention study (agis): 7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440

    Article  Google Scholar 

  • Janmey P, Euteneuer U, Traub P et al (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160

    Article  Google Scholar 

  • Karimi A, Rahmati S, Grytz R et al (2021) Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Acta Biomater 134:357–378

    Article  Google Scholar 

  • Katiyar K, Winter C, Struzyna L et al (2017) Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration. J Tissue Eng Regen Med 11(10):2737–2751

    Article  Google Scholar 

  • Kerrigan-Baumrind L, Quigley H, Pease M et al (2000) Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 41(3):741–748

    Google Scholar 

  • Korneva A, Kimball E, Jefferys J et al (2020) Biomechanics of the optic nerve head and peripapillary sclera in a mouse model of glaucoma. J R Soc Interface 17(173):20200708. https://doi.org/10.1098/rsif.2020.0708

    Article  Google Scholar 

  • Lajtha A, Galoyan A, Besedovsky H (2007) Handbook of neurochemistry and molecular neurobiology: neuroimmunology. Springer, New York

    Book  Google Scholar 

  • Leske M, Connell A, Wu SY et al (2001) Incidence of open-angle glaucoma: the barbados eye studies. Arch Ophthalmol 119(1):89–95

    Google Scholar 

  • Ling Y, Shi R, Midgett D et al (2019) Characterizing the collagen network structure and pressure-induced strains of the human lamina cribrosa. Invest Ophthalmol Vis Sci 60(7):2406–2422

    Article  Google Scholar 

  • Ling Y, Pease M, Jefferys J et al (2020) Pressure-induced changes in astrocyte gfap, actin, and nuclear morphology in mouse optic nerve. Invest Ophthalmol Vis Sci 61(11):14–14

    Article  Google Scholar 

  • Maas S, Ellis B, Ateshian G et al (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134(1):56. https://doi.org/10.1115/1.4005694

    Article  Google Scholar 

  • Midgett D, Pease M, Jefferys J et al (2017) The pressure-induced deformation response of the human lamina cribrosa: analysis of regional variations. Acta Biomater 53:123–139

    Article  Google Scholar 

  • Minckler D, Tso M, Zimmerman L (1976) A light microscopic, autoradiographic study of axoplasmic transport in the optic nerve head during ocular hypotony, increased intraocular pressure, and papilledema. Am J Ophthalmol 82(5):741–757. https://doi.org/10.1016/0002-9394(76)90012-X

    Article  Google Scholar 

  • Moerman K (2018) Gibbon: the geometry and image-based bioengineering add-on. J Open Source Softw 3(22):506

    Article  Google Scholar 

  • Morrison J, Moore C, Deppmeier L et al (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85–96. https://doi.org/10.1006/exer.1996.0184

    Article  Google Scholar 

  • Nguyen C, Midgett D, Kimball E et al (2017) Measuring deformation in the mouse optic nerve head and peripapillary sclera. Invest Ophthalmol Vis Sci 58(2):721–733

    Article  Google Scholar 

  • Nguyen C, Midgett D, Kimball E et al (2018) Age-related changes in quantitative strain of mouse astrocytic lamina cribrosa and peripapillary sclera using confocal microscopy in an explant model. Invest Ophthalmol Vis Sci 59(12):5157–5166

    Article  Google Scholar 

  • Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  • Quigley H (2015) The contribution of the sclera and lamina cribrosa to the pathogenesis of glaucoma: diagnostic and treatment implications. Prog Brain Res 220:59–86

    Article  Google Scholar 

  • Quigley H, Flower R, Addicks E et al (1980) The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 19(5):505–517

    Google Scholar 

  • Quigley H, Addicks E, Green W et al (1981) Optic nerve damage in human glaucoma: Ii. The site of injury and susceptibility to damage. Arch Ophthalmol 99(4):635–649

    Article  Google Scholar 

  • Quigley H, Sanchez R, Dunkelberger G et al (1987) Chronic glaucoma selectively damages large optic nerve fibers. Invest Ophthalmol Vis Sci 28(6):913–920

    Google Scholar 

  • Quigley H, McKinnon S, Zack D et al (2000) Retrograde axonal transport of bdnf in retinal ganglion cells is blocked by acute iop elevation in rats. Invest Ophthalmol Vis Sci 41(11):3460–3466

    Google Scholar 

  • Rasmussen C (2003) Gaussian processes in machine learning. In: Summer school on machine learning, Springer, pp 63–71

  • Roberts M, Grau V, Grimm J et al (2009) Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci 50(2):681–690

    Article  Google Scholar 

  • Roberts M, Liang Y, Sigal I et al (2010) Correlation between local stress and strain and lamina cribrosa connective tissue volume fraction in normal monkey eyes. Invest Ophthalmol Vis Sci 51(1):295–307

    Article  Google Scholar 

  • Safa B, Read T, Ethier C (2021) Assessment of the viscoelastic mechanical properties of the porcine optic nerve head using micromechanical testing and finite element modeling. Acta Biomater 134:379–387

    Article  Google Scholar 

  • Sander E, Downs J, Hart R et al (2006) A cellular solid model of the lamina cribrosa: mechanical dependence on morphology. J Biomech Eng 2:96

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676

    Article  Google Scholar 

  • Schwaner S, Perry R, Kight A et al (2021) Individual-specific modeling of rat optic nerve head biomechanics in glaucoma. J Biomech Eng 143(4):289

    Article  Google Scholar 

  • Sigal I, Flanagan J, Tertinegg I et al (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45(12):4378–4387. https://doi.org/10.1167/iovs.04-0133

    Article  Google Scholar 

  • Sigal I, Flanagan J, Ethier C (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46(11):4189–4199. https://doi.org/10.1167/iovs.05-0541

    Article  Google Scholar 

  • Sigal I, Flanagan J, Tertinegg I et al (2009) Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry. Biomech Model Mechanobiol 8(2):85–98

    Article  Google Scholar 

  • Sigal I, Flanagan J, Tertinegg I et al (2009) Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol 8(2):99–109

    Article  Google Scholar 

  • Voorhees A, Jan NJ, Austin M et al (2017) Lamina cribrosa pore shape and size as predictors of neural tissue mechanical insult. Invest Ophthalmol Vis Sci 58(12):5336–5346

    Article  Google Scholar 

  • Voorhees A, Jan NJ, Sigal I (2017) Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa. Acta Biomater 58:278–290

    Article  Google Scholar 

  • Voorhees A, Hua Y, Brazile B et al (2020) So-called lamina cribrosa defects may mitigate iop-induced neural tissue insult. Invest Ophthalmol Vis Sci 61(13):15–15. https://doi.org/10.1167/IOVS.61.13.15

    Article  Google Scholar 

  • Wang B, Hua Y, Brazile B et al (2020) Collagen fiber interweaving is central to sclera stiffness. Acta Biomater 113:429–437

    Article  Google Scholar 

  • Williams C, Rasmussen C (2006) Gaussian processes for machine learning, vol 2. MIT press, Cambridge

    MATH  Google Scholar 

  • Zhang L, Albon J, Jones H et al (2015) Collagen microstructural factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 56(3):2031–2042

    Article  Google Scholar 

  • Zhang Y, Abiraman K, Li H et al (2017) Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLoS Comput Biol 13(2):1–22. https://doi.org/10.1371/journal.pcbi.1005407

    Article  Google Scholar 

  • Zhuo L, Sun B, Zhang C et al (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187(1):36–42

    Article  Google Scholar 

  • Zuiderveld K (1994) Contrast limited adaptive histogram equalization. Graph Gems 8:474–485

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health EY 02120 (HQ); EY 01765 (Core facility grant, Wilmer Eye Institute); unrestricted donations to the Glaucoma Center of Excellence, Wilmer Eye Institute; the National Science Foundation Award 1727104 (TDN); Brightfocus Foundation G2015132 (TDN); and the Croucher Foundation (YTTL).

Funding

This work was supported by the National Institutes of Health EY 02120 (HQ); EY 01765 (Core facility grant, Wilmer Eye Institute); unrestricted donations to the Glaucoma Center of Excellence, Wilmer Eye Institute; the National Science Foundation Award 1727104 (TN); Brightfocus Foundation G2015132 (TN); and the Croucher Foundation (YTTL).

Author information

Authors and Affiliations

Authors

Contributions

YTTL and TDN wrote the main manuscript text, and YTTL prepared all the figures. All authors provided feedback on the methods, and reviewed and edited the manuscript.

Corresponding author

Correspondence to Thao D. Nguyen.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 9002 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y.T.T., Korneva, A., Quigley, H.A. et al. Computational study of the mechanical behavior of the astrocyte network and axonal compartments in the mouse optic nerve head. Biomech Model Mechanobiol 22, 1751–1772 (2023). https://doi.org/10.1007/s10237-023-01752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-023-01752-z

Keywords

Navigation