Skip to main content

Advertisement

Log in

Finite element analysis of the impact of bone nanostructure on its piezoelectric response

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The piezoelectric response of bone at the submicron scale is analyzed under mechanical loadings using the finite element (FE) method. A new algorithm is presented to virtually reconstruct realistic bone nanostructures, consisting of collagen fibrils embedded in a hydroxyapatite mineral network. This algorithm takes into account potential misalignments between fibrils, as well the porous structure of the mineral phase. A parallel non-iterative mesh generation algorithm is utilized to create high-fidelity FE models for several representative volume elements (RVEs) of the bone with various fibrils volume fractions and misalignments. The piezoelectric response of each RVE is simulated under three types of loading: the longitudinal compression, lateral compression, and shear. The resulting homogenized stress and electric field in RVEs with aligned fibrils showed a linear variation with the fibrils volume fraction under all loading conditions. For RVEs with misaligned fibrils, although more oscillations were observed in homogenized results, their difference with the results of RVEs with aligned fibrils subject to lateral compression and shear loadings were negligible. However, under longitudinal compression, the electric field associated with RVEs with misaligned fibrils was notably higher than that of RVEs with aligned fibrils for the same volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ahn AC, Grodzinsky AJ (2009) Relevance of collagen piezoelectricity to “wolff’s law’’ : a critical review. Med Eng Phys 31(7):733–741

    Article  Google Scholar 

  • Bar-On B, Wagner HD (2011) Mechanical model for staggered bio-structure. J Mech Phys Solids 59(9):1685–1701

    Article  MathSciNet  MATH  Google Scholar 

  • Bassett CA (1965) Electrical effects in bone. Sci Am 213(4):18–25

    Article  Google Scholar 

  • Denning D, Kilpatrick JI, Fukada E, Zhang N, Habelitz S, Fertala A, Gilchrist MD, Zhang Y, Tofail Syed AM, Rodriguez BJ (2017) Piezoelectric tensor of collagen fibrils determined at the nanoscale. ACS Biomater Sci Eng 3(6):929–935

    Article  Google Scholar 

  • Du Q, Faber V, Gunzburger M (1999) Centroidal voronoi tessellations: applications and algorithms. SIAM Rev 41(4):637–676

    Article  MathSciNet  MATH  Google Scholar 

  • Fratzl P, Weinkamer R (2007) Nature?s hierarchical materials. Prog Mater Sci 52(8):1263–1334

    Article  Google Scholar 

  • Fukada E, Yasuda I (1964) Piezoelectric effects in collagen. Japan J Appl Phys 3(2):117

    Article  Google Scholar 

  • Genin GM, Kent A, Birman V, Wopenka B, Pasteris JD, Marquez PJ, Thomopoulos S (2009) Functional grading of mineral and collagen in the attachment of tendon to bone. Biophys J 97(4):976–985

    Article  Google Scholar 

  • Gjelsvik A (1973) Bone remodeling and piezoelectricity-i. J Biomech 6(1):69–77

    Article  Google Scholar 

  • Habraken WJ, Tao J, Brylka LJ, Friedrich H, Bertinetti L, Schenk AS, Verch A, Dmitrovic V, Bomans PH, Frederik PM et al (2013) Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun 4(1):1–12

    Article  Google Scholar 

  • Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mechanica 213(1–2):131–154

    Article  MATH  Google Scholar 

  • Hang F, Barber AH (2011) Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue. J Royal Soc Interface 8(57):500–505

    Article  Google Scholar 

  • Hill R (1985) On the micro-to-macro transition in constitutive analyses of elastoplastic response at finite strain. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 98, pages 579–590. Cambridge Univ Press

  • Ji B, Gao H (2004) Mechanical properties of nanostructure of biological materials. J Mech Phys Solids 52(9):1963–1990

    Article  MATH  Google Scholar 

  • Jong De M, Chen W, Geerlings H, Asta M, Persson KA (2015) A database to enable discovery and design of piezoelectric materials. Sci Data 2(1):1–13

    Google Scholar 

  • Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79(4):1737–1746

    Article  Google Scholar 

  • Kalinin SV, Rodriguez BJ, Shin J, Jesse S, Grichko V, Thundat T, Baddorf AP, Gruverman A (2006) Bioelectromechanical imaging by scanning probe microscopy: Galvani’s experiment at the nanoscale. Ultramicroscopy 106(4–5):334–340

    Article  Google Scholar 

  • Kaygili O, Dorozhkin SV, Ates T, Al-Ghamdi AA, Yakuphanoglu F (2014) Dielectric properties of fe doped hydroxyapatite prepared by sol-gel method. Ceram Int 40(7):9395–9402

    Article  Google Scholar 

  • Landis WJ, Hodgens KJ, Arena J, Song MJ, McEwen BF (1996) Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech 33(2):192–202

    Article  Google Scholar 

  • Launey ME, Buehler MJ, Ritchie RO (2010) On the mechanistic origins of toughness in bone. Ann Rev Mater Res 40:25–53

    Article  Google Scholar 

  • Liang B, Nagarajan A, Soghrati S (2019) Scalable parallel implementation of cisamr: a non-iterative mesh generation algorithm. Comput Mech 64(1):173–195

    Article  MathSciNet  MATH  Google Scholar 

  • Madarash-Hill C, Hill JB (2004) Enhancing access to ieee conference proceedings: a case study in the application of ieee xplore full text and table of contents enhancements. Science & Technology Libraries 24(3–4):389–399

  • Marino AA, Becker RO, Soderholm SC (1971) Origin of the piezoelectric effect in bone. Calcif Tissue Res 8(1):177–180

    Article  Google Scholar 

  • Martínez-Ayuso G, Friswell MI, Adhikari S, Khodaparast HH, Berger H (2017) Homogenization of porous piezoelectric materials. Int J Solids Struct 113:218–229

    Article  Google Scholar 

  • Martínez-Reina J, Domínguez J, García-Aznar JM (2011) Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Biomech Model Mechanobiol 10(3):309–322

    Article  Google Scholar 

  • McNally E, Nan F, Botton GA, Schwarcz HP (2013) Scanning transmission electron microscopic tomography of cortical bone using z-contrast imaging. Micron 49:46–53

    Article  Google Scholar 

  • McNally EA, Schwarcz HP, Botton GA, Arsenault AL (2012) A model for the ultrastructure of bone based on electron microscopy of ion-milled sections. PLOS one 7(1):e29258

    Article  Google Scholar 

  • Minary-Jolandan M, Yu MF (2009) Nanoscale characterization of isolated individual type i collagen fibrils: polarization and piezoelectricity. Nanotechnology 20(8):085706

    Article  Google Scholar 

  • Nagarajan A, Soghrati S (2018) Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation. Computational Mechanics, pages 1–26

  • Nikolov S, Raabe D (2008) Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization. Biophys J 94(11):4220–4232

    Article  Google Scholar 

  • Niu L, Jee SE, Jiao K, Tonggu L, Li M, Wang L, Yang Y, Bian J, Breschi L, Jang SS et al (2017) Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater 16(3):370–378

    Article  Google Scholar 

  • Norman TL, Vashishth D, Burr DB (1995) Fracture toughness of human bone under tension. J Biomech 28(3):309–320

    Article  Google Scholar 

  • Piegl L, Tiller W (2012) The NURBS book. Springer, Berlin

    MATH  Google Scholar 

  • Reilly DT, Burstein AH, Frankel VH (1974) The elastic modulus for bone. J Biomech 7(3):271–275

    Article  Google Scholar 

  • Reznikov N, Bilton M, Lari L, Stevens MM, Kröger R (2018) Fractal-like hierarchical organization of bone begins at the nanoscale. Science 360(6388):eaa02189

    Article  Google Scholar 

  • Reznikov N, Shahar R, Weiner S (2014) Bone hierarchical structure in three dimensions. Acta Biomaterialia 10(9):3815–3826

    Article  Google Scholar 

  • Rho JY, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102

    Article  Google Scholar 

  • Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. American Institute of Physics

  • Sabet FA, Raeisi Najafi A, Hamed E, Jasiuk I (2016) Modelling of bone fracture and strength at different length scales a review. Interface Focus 6(1):20150055

    Article  Google Scholar 

  • Sanchez PF (2013) Microstructural model of the collagen fibril using finite element method

  • Santulli C (2015) Bio-inspired fiber composites. In Biomimetic technologies. Elsevier, pp 33–51

  • Schwarcz HP, Abueidda D, Jasiuk I (2017) The ultrastructure of bone and its relevance to mechanical properties. Front Phys 5:39

    Article  Google Scholar 

  • Shen ZL, Dodge MR, Kahn H, Ballarini R, Eppell SJ (2008) Stress-strain experiments on individual collagen fibrils. Biophys J 95(8):3956–3963

    Article  Google Scholar 

  • Silver FH, Landis WJ (2011) Deposition of apatite in collagenous extracellular matrices: identification of possible nucleation sites on type i collagen. Conn Tis Res 52(3):242–252

    Article  Google Scholar 

  • Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive mesh refinement: new technique for the automated modeling of materials with complex microstructures. Finite Elem Anal Des 125:24–40

    Article  Google Scholar 

  • Stock SR (2015) The mineral-collagen interface in bone. Calcif Tissue Int 97(3):262–280

    Article  Google Scholar 

  • Taylor D, Hazenberg JG, Lee TC (2007) Living with cracks: damage and repair in human bone. Nat Mater 6(4):263–268

    Article  Google Scholar 

  • Tofail S, Zhang Y, Gandhi AA (2011) Piezoelectricity of bone from a new perspective. In 2011-14th International Symposium on Electrets, pages 91–92. IEEE

  • Tomaselli VP, Shamos MH (1973) Electrical properties of hydrated collagen i dielectric properties. Biopolym Org Res Biomole 12(2):353–366

    Article  Google Scholar 

  • Tong W, Glimcher MJ, Katz JL, Kuhn L, Eppell SJ (2003) Size and shape of mineralites in young bovine bone measured by atomic force microscopy. Calcif Tissue Int 72(5):592–598

    Article  Google Scholar 

  • Vercher A, Giner E, Arango C, Tarancón JE, Fuenmayor FJ (2014) Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models. Biomech Model Mechanobiol 13(2):437–449

    Article  Google Scholar 

  • Wang Y, Ural A (2018) Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior. J Biomech 66:70–77

    Article  Google Scholar 

  • Wang Z, Vashishth D, Picu RC (2018) Bone toughening through stress-induced non-collagenous protein denaturation. Biomech Model Mechanobiol 17(4):1093–1106

    Article  Google Scholar 

  • Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14(1):23

    Article  Google Scholar 

  • Weiner S, Arad T, Traub W (1991) Crystal organization in rat bone lamellae. FEBS Lett 285(1):49–54

    Article  Google Scholar 

  • Weiner S, Traub W (1992) Bone structure: from angstroms to microns. The FASEB J 6(3):879–885

    Article  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Ann Rev Mater Sci 28(1):271–298

    Article  Google Scholar 

  • Wenger Marco PE, Bozec L, Horton MA, Mesquida P (2007) Mechanical properties of collagen fibrils. Biophys J 93(4):1255–1263

    Article  Google Scholar 

  • Yang L (2008) Mechanical properties of collagen fibrils and elastic fibers explored by afm. University of Twente, Enschede

    Google Scholar 

  • Yang L, Van der Werf KO, Fitié Carel FC, Bennink ML, Dijkstra PJ, Feijen J (2008) Mechanical properties of native and cross-linked type i collagen fibrils. Biophys J 94(6):2204–2211

    Article  Google Scholar 

  • Yang G, Xiao L, Lamboni L, Wiley J (2018) Bioinspired materials science and engineering. Wiley, Hoboken

    Book  Google Scholar 

  • Yuan F, Stock SR, Haeffner DR, Almer JD, Dunand DC, Brinson LC (2011) A new model to simulate the elastic properties of mineralized collagen fibril. Biomech Model Mechanobiol 10(2):147–160

    Article  Google Scholar 

  • Zhang ZQ, Liu B, Huang Y, Hwang KC, Gao H (2010) Mechanical properties of unidirectional nanocomposites with non-uniformly or randomly staggered platelet distribution. J Mech Phys Solids 58(10):1646–1660

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by a seed grant from the Ohio State University’s Institute for Materials Research (IMR). The corresponding author also acknowledges partial support through Air Force Office of Scientific Research (AFOSR) under grant number FA9550-17-1-0350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheil Soghrati.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pai, S., Kwon, J., Liang, B. et al. Finite element analysis of the impact of bone nanostructure on its piezoelectric response. Biomech Model Mechanobiol 20, 1689–1708 (2021). https://doi.org/10.1007/s10237-021-01470-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01470-4

Keywords

Navigation