Skip to main content

Advertisement

Log in

Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Pressure ulcers are devastating injuries that disproportionately affect the older adult population. The initiating factor of pressure ulcers is local ischemia, or lack of perfusion at the microvascular level, following tissue compression against bony prominences. In turn, lack of blood flow leads to a drop in oxygen concentration, i.e, hypoxia, that ultimately leads to cell death, tissue necrosis, and disruption of tissue continuity. Despite our qualitative understanding of the initiating mechanisms of pressure ulcers, we are lacking quantitative knowledge of the relationship between applied pressure, skin mechanical properties as well as structure, and tissue hypoxia. This gap in our understanding is, at least in part, due to the limitations of current imaging technologies that cannot simultaneously image the microvascular architecture, while quantifying tissue deformation. We overcome this limitation in our work by combining realistic microvascular geometries with appropriate mechanical constitutive models into a microscale finite element model of the skin. By solving boundary value problems on a representative volume element via the finite element method, we can predict blood volume fractions in response to physiological skin loading conditions (i.e., shear and compression). We then use blood volume fraction as a homogenized variable to couple tissue-level skin mechanics to an oxygen diffusion model. With our model, we find that moderate levels of pressure applied to the outer skin surface lead to oxygen concentration contours indicative of tissue hypoxia. For instance, we show that applying a pressure of 60 kPa at the skin surface leads to a decrease in oxygen partial pressure from a physiological value of 65 mmHg to a hypoxic level of 31 mmHg. Additionally, we explore the sensitivity of local oxygen concentration to skin thickness and tissue stiffness, two age-related skin parameters. We find that, for a given pressure, oxygen concentration decreases with decreasing skin thickness and skin stiffness. Future work will include rigorous calibration and validation of this model, which may render our work an important tool toward developing better prevention and treatment tools for pressure ulcers specifically targeted toward the older adult patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen V, Ryan D, Murray A (1993) Repeatability of subject/bed interface pressure measurements. J Biomed Eng 15:329–332

    Article  Google Scholar 

  • Allman RM, Goode PS, Patrick MM, Burst N, Bartolucci AA (1995) Pressure ulcer risk factors among hospitalized patients with activity limitation. JAMA 273:865–870

    Article  Google Scholar 

  • Annaidh AN, Bruyere K, Destrade M, Gilchrist MD, Maurini C, Otténio M, Saccomandi G (2012) Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Ann Biomed Eng 40:1666–1678

    Article  Google Scholar 

  • Ashcroft GS, Herrick SE, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW (1997) Human ageing impairs injury-induced in vivo expression of tissue inhibitor of matrix metalloproteinases (TIMP)-1 and-2 proteins and mRNA. J Pathol J Pathol Soc G B Irel 183:169–176

    Google Scholar 

  • Benítez JM, Montáns FJ (2017) The mechanical behavior of skin: structures and models for the finite element analysis. Comput Struct 190:75–107

    Article  Google Scholar 

  • Bentov I, Reed MJ (2015) The effect of aging on the cutaneous microvasculature. Microvasc Res 100:25–31

    Article  Google Scholar 

  • Braverman IM (1989) Ultrastructure and organization of the cutaneous microvasculature in normal and pathologic states. J Investig Dermatol 93:S2–S9

    Article  Google Scholar 

  • Braverman IM, Keh A, Goldminz D (1990) Correlation of laser doppler wave patterns with underlying microvascular anatomy. J Investig Dermatol 95:283–286

    Article  Google Scholar 

  • Bruls WA, Slaper H, van Der Leun JC, Berrens L (1984) Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths. Photochem Photobiol 40:485–494

    Article  Google Scholar 

  • Buganza-Tepole A, Steinberg JP, Kuhl E, Gosain AK (2014) Application of finite element modeling to optimize flap design with tissue expansion. Plast Reconstr Surg 134:785

    Article  Google Scholar 

  • Casquero H, Liu L, Bona-Casas C, Zhang Y, Gomez H (2016) A hybrid variational-collocation immersed method for fluid-structure interaction using unstructured t-splines. Int J Numer Methods Eng 105:855–880

    Article  MathSciNet  Google Scholar 

  • Causin P, Malgaroli F (2017) Mathematical modeling of local perfusion in large distensible microvascular networks. Comput Methods Appl Mech Eng 323:303–329

    Article  MathSciNet  Google Scholar 

  • Causin P, Guidoboni G, Malgaroli F, Sacco R, Harris A (2016) Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol 15:525–542

    Article  Google Scholar 

  • Cevc G, Vierl U (2007) Spatial distribution of cutaneous microvasculature and local drug clearance after drug application on the skin. J Controll Release 118:18–26

    Article  Google Scholar 

  • Choi WJ, Wang H, Wang RK (2014) Optical coherence tomography microangiography for monitoring the response of vascular perfusion to external pressure on human skin tissue. J Biomed Opt 19:056003

    Article  Google Scholar 

  • Coleman S, Nixon J, Keen J, Wilson L, McGinnis E, Dealey C, Stubbs N, Farrin A, Dowding D, Schols JM et al (2014) A new pressure ulcer conceptual framework. J Adv Nurs 70:2222–2234

    Article  Google Scholar 

  • Colin D, Saumet J (1996) Influence of external pressure on transcutaneous oxygen tension and laser doppler flowmetry on sacral skin. Clin Physiol 16:61–72

    Article  Google Scholar 

  • Costabal FS, Hurtado DE, Kuhl E (2016) Generating Purkinje networks in the human heart. J Biomech 49:2455–2465

    Article  Google Scholar 

  • Crichton ML, Donose BC, Chen X, Raphael AP, Huang H, Kendall MA (2011) The viscoelastic, hyperelastic and scale dependent behaviour of freshly excised individual skin layers. Biomaterials 32:4670–4681

    Article  Google Scholar 

  • Daly CH, Odland GF (1979) Age-related changes in the mechanical properties of human skin. J Investig Dermatol 73(1):84–87

    Article  Google Scholar 

  • Davis MJ, Lawler JC (1958) The capillary circulation of the skin: some normal and pathological findings. AMA Arch Dermatol 77:690–703

    Article  Google Scholar 

  • Dealey C, Brindle CT, Black J, Alves P, Santamaria N, Call E, Clark M (2015) Challenges in pressure ulcer prevention. Int Wound J 12:309–312

    Article  Google Scholar 

  • Demarré L, Van Lancker A, Van Hecke A, Verhaeghe S, Grypdonck M, Lemey J, Annemans L, Beeckman D (2015) The cost of prevention and treatment of pressure ulcers: a systematic review. Int J Nurs Stud 52:1754–1774

    Article  Google Scholar 

  • Drummond DS, Narechania RG, Rosenthal AN, Breed AL, Lange TA, Drummond DK (1982) A study of pressure distributions measured during balanced and unbalanced sitting. J Bone Jt Surg Am 64(7):1034–1039

    Article  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2005) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  • Gawlitta D, Oomens CW, Bader DL, Baaijens FP, Bouten CV (2007) Temporal differences in the influence of ischemic factors and deformation on the metabolism of engineered skeletal muscle. J Appl Physiol 103:464–473

    Article  Google Scholar 

  • Geerligs M, Van Breemen L, Peters G, Ackermans P, Baaijens F, Oomens C (2011) In vitro indentation to determine the mechanical properties of epidermis. J Biomech 44:1176–1181

    Article  Google Scholar 

  • Gerhardt L-C, Schmidt J, Sanz-Herrera J, Baaijens F, Ansari T, Peters G, Oomens C (2012) A novel method for visualising and quantifying through-plane skin layer deformations. J Mech Behav Biomed Mater 14:199–207

    Article  Google Scholar 

  • Goldberger AL, Bhargava V, West BJ, Mandell AJ (1985) On a mechanism of cardiac electrical stability. The fractal hypothesis. Biophys J 48:525–528

    Article  Google Scholar 

  • Gottrup F (2004) Oxygen in wound healing and infection. World J Surg 28:312–315

    Article  Google Scholar 

  • Gould DJ, Vadakkan TJ, Poché RA, Dickinson ME (2011) Multifractal and lacunarity analysis of microvascular morphology and remodeling. Microcirculation 18:136–151

    Article  Google Scholar 

  • Grossmann U (1982) Simulation of combined transfer of oxygen and heat through the skin using a capillary-loop model. Math Biosci 61:205–236

    Article  MATH  Google Scholar 

  • Groves RB, Coulman SA, Birchall JC, Evans SL (2013) An anisotropic, hyperelastic model for skin: experimental measurements, finite element modelling and identification of parameters for human and murine skin. J Mech Behav Biomed Mater 18:167–180

    Article  Google Scholar 

  • Hahn HK, Georg M, Peitgen HO (2005) Fractal aspects of three-dimensional vascular constructive optimization. In: Losa GA (ed) Fractals in biology and medicine. Springer, pp 55–66

  • Hendriks F, Brokken D, Oomens C, Bader D, Baaijens F (2006) The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys 28:259–266

    Article  Google Scholar 

  • Holbrook KA, Odland GF (1974) Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J Investig Dermatol 62:415–422

    Article  Google Scholar 

  • Horikoshi T, Balin AK, Carter DM (1986) Effect of oxygen on the growth of human epidermal keratinocytes. J Investig Dermatol 86(4):424–427

    Article  Google Scholar 

  • Iivarinen JT, Korhonen RK, Julkunen P, Jurvelin JS (2011) Experimental and computational analysis of soft tissue stiffness in forearm using a manual indentation device. Med Eng Phys 33:1245–1253

    Article  Google Scholar 

  • Ijiri T, Ashihara T, Yamaguchi T, Takayama K, Igarashi T, Shimada T, Namba T, Haraguchi R, Nakazawa K (2008) A procedural method for modeling the purkinje fibers of the heart. J Physiol Sci 58:481–486

    Article  Google Scholar 

  • Jor JW, Parker MD, Taberner AJ, Nash MP, Nielsen PM (2013) Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip Rev Syst Biol Med 5:539–556

    Article  Google Scholar 

  • Kazhdan M, Hoppe H (2013) Screened poisson surface reconstruction. ACM Trans Graph (TOG) 32:29

    Article  MATH  Google Scholar 

  • Kosiak M (1961) Etiology of decubitus ulcers. Arch Phys Med Rehabil 42:19

    Google Scholar 

  • Krueger N, Luebberding S, Oltmer M, Streker M, Kerscher M (2011) Age-related changes in skin mechanical properties: a quantitative evaluation of 120 female subjects. Skin Res Technol 17:141–148

    Article  Google Scholar 

  • Kumaraswamy N, Khatam H, Reece GP, Fingeret MC, Markey MK, Ravi-Chandar K (2017) Mechanical response of human female breast skin under uniaxial stretching. J Mech Behav Biomed Mater 74:164–175

    Article  Google Scholar 

  • Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12

    Article  Google Scholar 

  • Lee T, Turin SY, Gosain AK, Tepole AB (2018) Multi-view stereo in the operating room allows prediction of healing complications in a patient-specific model of reconstructive surgery. J Biomech 74:202–206

    Article  Google Scholar 

  • Lee T, Gosain AK, Bilionis I, Tepole AB (2019) Predicting the effect of aging and defect size on the stress profiles of skin from advancement, rotation and transposition flap surgeries. J Mech Phys Solids 125:572–590

    Article  MathSciNet  Google Scholar 

  • Leveque J, Corcuff P, Rigal Jd, Agache P (1984) In vivo studies of the evolution of physical properties of the human skin with age. Int J Dermatol 23:322–329

    Article  Google Scholar 

  • Li L, Mac-Mary S, Sainthillier J-M, Nouveau S, De Lacharriere O, Humbert P (2006) Age-related changes of the cutaneous microcirculation in vivo. Gerontology 52:142–153

    Article  Google Scholar 

  • Liao F, Burns S, Jan Y-K (2013) Skin blood flow dynamics and its role in pressure ulcers. J Tissue Viability 22:25–36

    Article  Google Scholar 

  • Limbert G (2014) State-of-the-art constitutive models of skin biomechanics. In: Querleux B (ed) Computational Biophysics of the Skin. Taylor and Francis, pp 95–131

  • Limbert G (2017) Mathematical and computational modelling of skin biophysics: a review. Proc R Soc A 473:20170257

    Article  MathSciNet  MATH  Google Scholar 

  • Linder-Ganz E, Gefen A (2007) The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles. Ann Biomed Eng 35:2095–2107

    Article  Google Scholar 

  • Lister T, Wright PA, Chappell PH (2012) Optical properties of human skin. J Biomed Opt 17:090901

    Google Scholar 

  • Liu X, Cleary J, German G (2016) The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum. Acta Biomater 43:78–87

    Article  Google Scholar 

  • Loerakker S, Stekelenburg A, Strijkers G, Rijpkema J, Baaijens F, Bader D, Nicolay K, Oomens C (2010) Temporal effects of mechanical loading on deformation-induced damage in skeletal muscle tissue. Ann Biomed Eng 38:2577–2587

    Article  Google Scholar 

  • Loerakker S, Manders E, Strijkers GJ, Nicolay K, Baaijens FP, Bader DL, Oomens CW (2011) The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading. J Appl Physiol 111:1168–1177

    Article  Google Scholar 

  • Lokshin O, Lanir Y (2009) Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J Biomech Eng 131:031009

    Article  Google Scholar 

  • Luebberding S, Krueger N, Kerscher M (2014) Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women. Skin Res Technol 20:127–135

    Article  Google Scholar 

  • Lyder CH, Ayello EA (2008) Pressure ulcers: a patient safety issue. Agency for Healthcare Research and Quality (US), Rockville

    Google Scholar 

  • Lynch B, Bonod-Bidaud C, Ducourthial G, Affagard J-S, Bancelin S, Psilodimitrakopoulos S, Ruggiero F, Allain J-M, Schanne-Klein M-C (2017) How aging impacts skin biomechanics: a multiscale study in mice. Sci Rep 7:13750

    Article  Google Scholar 

  • Mak AF, Zhang M, Tam EW (2010) Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion. Annu Rev Biomed Eng 12:29–53

    Article  Google Scholar 

  • Makhsous M, Lim D, Hendrix R, Bankard J, Rymer WZ, Lin F (2007) Finite element analysis for evaluation of pressure ulcer on the buttock: development and validation. IEEE Trans Neural Syst Rehabil Eng 15:517–525

    Article  Google Scholar 

  • Maklebust J, Sieggreen M (2001) Pressure ulcers: guidelines for prevention and management. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scr 32:257

    Article  MathSciNet  MATH  Google Scholar 

  • Manorama AA, Baek S, Vorro J, Sikorskii A, Bush TR (2010) Blood perfusion and transcutaneous oxygen level characterizations in human skin with changes in normal and shear loads implications for pressure ulcer formation. Clin Biomech 25:823–828

    Article  Google Scholar 

  • Meglinski IV, Matcher SJ (2002) Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions. Physiol Meas 23:741

    Article  Google Scholar 

  • Mitchell N, Sifakis E et al (2015) Gridiron: an interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures. ACM Trans Graph (TOG) 34:43

    Google Scholar 

  • Moor AN, Tummel E, Prather JL, Jung M, Lopez JJ, Connors S, Gould LJ (2014) Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure. Age 36:733–748

    Article  Google Scholar 

  • Müller B, Elrod J, Pensalfini M, Hopf R, Distler O, Schiestl C, Mazza E (2018) A novel ultra-light suction device for mechanical characterization of skin. PloS ONE 13:e0201440

    Article  Google Scholar 

  • Nguyen-Tu M-S, Begey A-L, Decorps J, Boizot J, Sommer P, Fromy B, Sigaudo-Roussel D (2013) Skin microvascular response to pressure load in obese mice. Microvasc Res 90:138–143

    Article  Google Scholar 

  • Nilsson GE, Tenland T, Oberg PA (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27(10):597–604

    Article  Google Scholar 

  • Ogrin R, Darzins P, Khalil Z (2005) Age-related changes in microvascular blood flow and transcutaneous oxygen tension under basal and stimulated conditions. J Gerontol Ser A Biol Sci Med Sci 60:200–206

    Article  Google Scholar 

  • Oomens C, Van Campen D, Grootenboer H (1987) A mixture approach to the mechanics of skin. J Biomech 20:877–885

    Article  Google Scholar 

  • Oomens CWJ, Bressers O, Bosboom E, Bouten C, Bader D (2003) Can loaded interface characteristics influence strain distributions in muscle adjacent to bony prominences? Comput Methods Biomech Biomed Eng 6:171–180

    Article  Google Scholar 

  • Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Physics 30:599–606

    Article  Google Scholar 

  • Pan W, Drost JP, Roccabianca S, Baek S, Bush TR (2018) A potential tool for the study of venous ulcers: blood flow responses to load. J Biomech Eng 140:031009

    Article  Google Scholar 

  • Park CJ, Clark SG, Lichtensteiger CA, Jamison RD, Johnson AJW (2009) Accelerated wound closure of pressure ulcers in aged mice by chitosan scaffolds with and without bFGF. Acta Biomater 5:1926–1936

    Article  Google Scholar 

  • Peirce SM, Skalak TC, Rodeheaver GT (2000) Ischemia-reperfusion injury in chronic pressure ulcer formation: a skin model in the rat. Wound Repair Regen 8:68–76

    Article  Google Scholar 

  • Rausch MK, Humphrey JD (2017) A computational model of the biochemomechanics of an evolving occlusive thrombus. J Elast 129:125–144

    Article  MathSciNet  MATH  Google Scholar 

  • Riegel J, Werner M, van Havre Y (2001–2018) FreeCAD (version 0.17.13541). http://www.freecadweb.org/. Accessed Mar 2019

  • Sadler Z, Scott J, Drost J, Chen S, Roccabianca S, Bush TR (2018) Initial estimation of the in vivo material properties of the seated human buttocks and thighs. Int J Non Linear Mech 107:77–85

    Article  Google Scholar 

  • Shilo M, Gefen A (2012) Identification of capillary blood pressure levels at which capillary collapse is likely in a tissue subjected to large compressive and shear deformations. Comput Methods Biomech Biomed Eng 15:59–71

    Article  Google Scholar 

  • Shimizu H (2007) Shimizu’s textbook of dermatology. Hokkaido University, Sapporo

    Google Scholar 

  • Shore AC (2000) Capillaroscopy and the measurement of capillary pressure. Br J Clin Pharmacol 50:501–513

    Article  Google Scholar 

  • Sree VD, Rausch MK, Tepole AB (2019) Towards understanding pressure ulcer formation: coupling an inflammation regulatory network to a tissue scale finite element model. Mech Res Commun. https://doi.org/10.1016/j.mechrescom.2019.05.003

    Article  Google Scholar 

  • Stücker M, Struk A, Altmeyer P, Herde M, Baumgärtl H, Lübbers DW (2002) The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis. J Physiol 538:985–994

    Article  Google Scholar 

  • Tawhai MH, Pullan A, Hunter P (2000) Generation of an anatomically based three-dimensional model of the conducting airways. Ann Biomed Eng 28:793–802

    Article  Google Scholar 

  • Teichert G, Marquis E, Garikipati K (2018) Machine learning materials physics: algorithm predicts precipitate morphology in an alternative to phase field dynamics. arXiv preprint arXiv:1806.00503

  • Tepole AB (2017) Computational systems mechanobiology of wound healing. Comput Methods Appl Mech Eng 314:46–70

    Article  MathSciNet  Google Scholar 

  • Timar-Banu O, Beauregard H, Tousignant J, Lassonde M, Harris P, Viau G, Vachon L, Levy E, Abribat T (2001) Development of noninvasive and quantitative methodologies for the assessment of chronic ulcers and scars in humans. Wound Repair Regen 9:123–132

    Article  Google Scholar 

  • Tonge TK, Atlan LS, Voo LM, Nguyen TD (2013) Full-field bulge test for planar anisotropic tissues: part I—experimental methods applied to human skin tissue. Acta Biomater 9:5913–5925

    Article  Google Scholar 

  • Vankan W, Huyghe J, Janssen J, Huson A, Hacking W, Schreiner W (1997) Finite element analysis of blood flow through biological tissue. Int J Eng Sci 35:375–385

    Article  MATH  Google Scholar 

  • Verver M, Van Hoof J, Oomens C, Wismans J, Baaijens F (2004) A finite element model of the human buttocks for prediction of seat pressure distributions. Comput Methods Biomech Biomed Eng 7:193–203

    Article  Google Scholar 

  • Wang W (2005) Oxygen partial pressure in outer layers of skin: simulation using three-dimensional multilayered models. Microcirculation 12:195–207

    Article  Google Scholar 

  • Wang W, Winlove C, Michel C (2003) Oxygen partial pressure in outer layers of skin of human finger nail folds. J Physiol 549:855–863

    Article  Google Scholar 

  • Weickenmeier J, Jabareen M, Mazza E (2015) Suction based mechanical characterization of superficial facial soft tissues. J Biomech 48:4279–4286

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian B. Tepole.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 881 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sree, V.D., Rausch, M.K. & Tepole, A.B. Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation. Biomech Model Mechanobiol 18, 1947–1964 (2019). https://doi.org/10.1007/s10237-019-01187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-019-01187-5

Keywords

Navigation