Skip to main content

Advertisement

Log in

Interannual variability of wave climate in the Caribbean Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Low-frequency interannual climatic oscillations have been reported to influence the precipitation regimes, river discharges, winds, and sea level in the Caribbean Sea. Here, we analyzed the presence and relevance of low-frequency oscillations in the waves’ climate of the Caribbean Sea using data from WAVEWATCH III (NOAA) reanalysis and applying frequency domain wavelet transform technique. Results show a clear sectorization of the Caribbean Sea according to the presence and relevance of interannual oscillations in wave climate, where the southwestern region (Colombian basin) exhibits a larger number of statistically significant oscillations (at 95% confidence levels) with recurrence periods of 2–4, 4–8, and 8–12 years. Only some of these frequencies are observed in the rest of Caribbean basin. Two climatic events occurring in the periods 1997–1998 and 2010–2011 stand out in the study zone for their high energy in wavelet analysis. These events have been associated with the occurrence of the warm and cold phases of the El Niño Southern Oscillation (ENSO), respectively, and are well known due to their strong global effects on hydroclimatology. Thus, an additional analysis was performed in the time domain to investigate the effect of the two events on Caribbean Sea waves. The results revealed an influence of ENSO on significant wave height and peak period comparing with multi-year average conditions, producing highly variable spatial and temporal wave patterns, with more evident effects during the cold phase of ENSO (La Niña). These results confirm the sectorization of the Caribbean Sea regarding the energy and interannual variability of waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Addison PS (2017) The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance. CRC press, Boca Raton

    Google Scholar 

  • Amador JA (1998) A climatic feature of the tropical Americas: the trade wind easterly jet. Top Meteor Oceanogr 5(2):1–13

    Google Scholar 

  • Andrade CA, Barton ED (2000) Eddy development and motion in the Caribbean Sea. J Geophys Res 105:26191–26201

    Article  Google Scholar 

  • Appendini (2015) Wave energy potential assessment in the Caribbean low level jet using wave hindcast information. Appl Energy 137:375–384

    Article  Google Scholar 

  • Appendini CM, Torres-Freyermuth A, Salles P, López-González J, Mendoza ET (2014) Wave climate and trends for the Gulf of Mexico: a 30-Yr wave hindcast. J Clim 27(4):1619–1632

    Article  Google Scholar 

  • Barnett TP (1991) The interaction of multiple time scales in the tropical climate system. J Clim 4(3):269–285

    Article  Google Scholar 

  • Bernal G, Poveda G, Roldán P, Andrade C (2006) Patrones de Variabilidad de Las Temperaturas Superficiales Del Mar En La Costa Caribe Colombiana. Rev Acad Colomb Cienc 30(115):195–208

    Google Scholar 

  • Bernal G, Osorio AF, Urrego L, Peláez D, Molina E, Zea S, Montoya RD, Villegas N (2016) Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. J Mar Syst 164:85–100

    Article  Google Scholar 

  • Bitner-Gregersen E, Guedes Soares C (2007) Uncertainty of average wave steepness prediction from global wave databases. Advancements Mar Struct:3–10

  • Cadena MC, Devis-Morales A, Pabón JD, Málikov I, Reyna-Moreno JA, Ortiz JR (2006) Relationship between the 1997/98 El Niño and 1999/2001 La Niña events and oil palm tree production in Tumaco, southwestern Colombia. Adv Geosci 6:195–199

    Article  Google Scholar 

  • Calverley MJ et al (2002) Wave climate study of the Caribbean Sea. In Proc. Seventh Int. Workshop on Wave Hindcasting and Forecasting,

  • Devis-Morales A, Montoya-Sánchez RA, Bernal G, Osorio AF (2017) Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications. Appl Ocean Res 69:10–26

    Article  Google Scholar 

  • Euscátegui, Christian, Gonzalo Hurtado (2011) Análisis Del Impacto Del Fenómeno ‘La Niña’ 2010–2011 En La Hidroclimatología Del País. Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia–IDEAM. Recuperado de http://www.ideam.gov.co/documents/21021/418818/An/C3/A1lisis+Impacto+La+Ni/C3/B1a.pdf/. 640a4a18-4a2a-4a25-b7d5-b3768e0a768a

  • Gamble DW, Curtis S (2008) Caribbean precipitation: review, model and prospect. Prog Phys Geogr 32(3):265–276

    Article  Google Scholar 

  • Handoh I, Matthews A, Bigg G, Stevens D (2006) Interannual variability of the tropical Atlantic independent of and associated with ENSO: part i. The North Tropical Atlantic. Int J Climatol 26:1937–1956

    Article  Google Scholar 

  • Hoyos N, Escobar J, Restrepo JC, Arango AM, Ortiz JC (2013) Impact of the 2010-2011 La Niña phenomenon in Colombia, South America: the human toll of an extreme weather event. Appl Geogr 39(April):16–25

    Article  Google Scholar 

  • Kim K-Y, Kim YY (2002) Mechanism of Kelvin and Rossby waves during ENSO events. Meteorog Atmos Phys 81(3–4):169–189

    Article  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314(5806):1740–1745

    Article  Google Scholar 

  • Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21(6):1260–1276

    Article  Google Scholar 

  • Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans Atmos 103(C7):14261–14290

    Article  Google Scholar 

  • Ochoa M, Bernal G (2009) Variabilidad Estacional e Interanual Del Viento En Los Datos Del Reanálisis NCEP / NCAR En La Cuenca Colombia , Mar Caribe Seasonal and Interannual Wind Variability into the NCEP / NCAR Reanalysis Data on the Colombian Basin , Caribbean Sea Resumen. Avances en Recursos Hidráulicos 20:7–20

    Google Scholar 

  • Ortiz-Royero JC, Otero LJ, Restrepo JC, Ruiz J, Cadena M (2013) Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat Hazards Earth Syst Sci 13(11):2797–2804

    Article  Google Scholar 

  • Osorio AF, Montoya RD, Ortiz JC, Peláez D (2016) Construction of synthetic ocean wave series along the Colombian Caribbean coast: a wave climate analysis. Appl Ocean Res 56:119–131. https://doi.org/10.1016/j.apor.2016.01.004

    Article  Google Scholar 

  • Osorio Andrés Fernando, Mesa Julio César, Bernal Gladis Rocío, Montoya Rubén Darío (2017) Reconstrucción de Cuarenta Años de Datos de Oleaje En El Mar Caribe Colombiano Empleando El Modelo WWIII™ y Diferentes Fuentes de Datos. Boletín Científico CIOH No. 27, pp 37–56 (2009)

  • Penland C, Matrosova L (1998) Prediction of tropical Atlantic Sea surface temperatures using linear inverse modeling. J Clim 11(3):483–496

    Article  Google Scholar 

  • Poveda G (2004) La Hidroclimatología de Colombia: Una Síntesis Desde La Escala inter-decadal hasta La Escala Diurna. Revista de la Academia Colombiana de Ciencias exactas, físicas y naturales 28(107):201–222

    Google Scholar 

  • Poveda G, Mesa OJ (1996) The North Atlantic oscillation and its influence on the hydro-climatology of Colombia. In Proc. XVII Latin-American Congress on Hydraulics and Hydrology, Guayaqui, Ecuador, IAHR, 343–54

  • Ray RD, Beckley BD (2003) Simultaneous ocean wave measurements by the Jason and Topex satellites, with buoy and model comparisons special issue: Jason-1 calibration/validation. Mar Geod 26(3–4):367–382

    Article  Google Scholar 

  • Reguero BG, Méndez FJ, Losada IJ (2013) Variability of multivariate wave climate in Latin America and the Caribbean. Glob Planet Chang 100:70–84

    Article  Google Scholar 

  • Restrepo (2019) Contribution of low-frequency climatic–oceanic oscillations to Streamflow variability in small, coastal rivers of the Sierra Nevada de Santa Marta (Colombia). Hydrol Earth Syst Sci 23(5):2379–2400

    Article  Google Scholar 

  • Restrepo JD, Kjerfve B (2000) Magdalena River: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J Hydrol 235:137–149

    Article  Google Scholar 

  • Restrepo JC, Ortíz JC, Pierini J, Schrottke K, Maza M, Otero L, Aguirre J (2014) Freshwater discharge into the Caribbean Sea from the rivers of northwestern South America (Colombia): magnitude, variability and recent changes. J Hydrol 509:266–281

    Article  Google Scholar 

  • Ruiz D et al (2002) Modelación Sistémica Para El Dianóstico de La Interacción Clima-malaria. Meteorol Colombiana 5:41–48

    Google Scholar 

  • Ruiz-Ochoa M, Bernal G (2009) Variabilidad Estacional e Interanual Del Viento En Los Datos Del Reanálisis NCEP / NCAR En La Cuenca Colombia , Mar Caribe. Avances en Recursos Hidráulicos 20:7–20

    Google Scholar 

  • Ruiz-Ochoa M, Beier E, Bernal G, Barton ED (2012) Sea surface temperature variability in the Colombian basin, Caribbean Sea. Deep-Sea Res I Oceanogr Res Pap 64:43–53

    Article  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513(7516):45–53

    Article  Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9(8):1698–1711

    Article  Google Scholar 

  • Tolman Hendrik L (2007) The 2007 Release of WAVEWATCH III. In Proc. 10th Int. Workshop of Wave Hindcasting and Forecasting,

  • Tootle GA, Piechota TC, Gutiérrez F (2008) The relationships between Pacific and Atlantic Ocean Sea surface temperatures and Colombian streamflow variability. J Hydrol 349(3–4):268–276

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Article  Google Scholar 

  • Torres RR, Tsimplis MN (2012) Seasonal Sea level cycle in the Caribbean Sea. J Geophys Res Oceans 117(7):1–18

    Google Scholar 

  • Villar E, Carlo J et al (2009) Spatio-temporal rainfall variability in the Amazon Basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol J Royal Meteorol Soc 29(11):1574–1594

    Google Scholar 

  • Wang C (2007) Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn 29(4):411–422

    Article  Google Scholar 

  • Wolter K, Timlin MS (1998) Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53(9):315–324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco J. Vega.

Additional information

Responsible Editor: Andrés Osorio

This article is part of the Topical Collection on the International Conference of Marine Science ICMS2018, the 3rd Latin American Symposium on Water Waves (LatWaves 2018), Medellin, Colombia, 19-23 November 2018 and the XVIII National Seminar on Marine Sciences and Technologies (SENALMAR), Barranquilla, Colombia 22-25 October 2019

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, M.J., Alvarez-Silva, O., Restrepo, J.C. et al. Interannual variability of wave climate in the Caribbean Sea. Ocean Dynamics 70, 965–976 (2020). https://doi.org/10.1007/s10236-020-01377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01377-1

Keywords

Navigation