Skip to main content

Advertisement

Log in

Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Oceanographic Modeling and Observation Network (REMO) focuses on scientific and technological development of operational oceanography in Brazil considering both numerical forecasting and observational systems. A key component of the forecasting system is the recently constructed REMO Ocean Data Assimilation System (RODAS) into the HYbrid Coordinate Ocean Model (HYCOM). Here, RODAS is presented for the first time with its full capability. RODAS employs a multivariate ensemble optimal interpolation scheme that is able to assimilate Argo temperature (T) and salinity (S) profiles, sea surface temperature (SST) analyses, and satellite along-track or gridded sea-level anomaly (SLA) data. RODAS is presented together with a series of Observing System Experiments (OSEs), in which components of the Global Ocean Observing System (GOOS) were systematically withheld from 3-year assimilation runs over the Atlantic Ocean. Using the same initial condition from a full assimilation run, OSEs were performed from 1 January 2010 to 31 December 2012 withholding (i) only Argo data; (ii) only UK MetOffice OSTIA SST analyses; (iii) only satellite along-track altimetry data; and (iv) all observation types. These runs were also compared with the full assimilation run and the model free run to evaluate the impact of different observations into the model state. The results show that each observation type brings complementary information into the analyses. Assimilation of SST is needed to better constrain the mixed layer temperature, while assimilation of SLA mainly improves the representation of circulation by adding mesoscale-like features, such as those found in the Gulf Stream and the Brazil-Malvinas Confluence. In the subsurface, only Argo observations are able to constrain the thermohaline state. When Argo data are withheld, the quality of S is seriously compromised and becomes worse than the free run in the upper ocean. Additionally, the run withholding all observation types shows that the model state in the surface almost reaches the free run state by the end of the third year. However, below 300 m, the memory of the Argo data assimilation is longer and the quality of T and S is only degraded by 35% in comparison with the full assimilation run.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Backeberg, BC, ·Counillon F, Johannessen JA, Pujol MI (2014) Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system. Ocean Dyn 64:1121-1136. https://doi.org/10.1007/s10236-014-0717-6

    Article  Google Scholar 

  • Balmaseda M, Vidard A, Anderson DLT (2008) The ECMWF ocean analysis system: ORA-S3. Mon Weather Rev 136:3018–3034. https://doi.org/10.1175/2008MWR2433.1

    Article  Google Scholar 

  • Balmaseda M, Mogensen K, Weaver A (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. https://doi.org/10.1002/qj.2063

    Article  Google Scholar 

  • Bell MJ, Lefebvre M, Le Traon P-Y, Smith N, Wilmer-Becker K (2009) GODAE: the Global Ocean Data Assimilation Experiment. Oceanogr 22:14–21. https://doi.org/10.5670/oceanog.2009.62

    Article  Google Scholar 

  • Bell MJ, Schiller A, Le Traon P-Y, Smith NR, Dombrowsky E, Wilmer-Becker K (2015) An introduction to GODAE OceanView. J Oper Oceanogr 8(sup1):s2–s11. https://doi.org/10.1080/1755876X.2015.1022041

    Article  Google Scholar 

  • Bleck R (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 37:55–88

    Article  Google Scholar 

  • Boyer, TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, O’Brien TD, Paver CR, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Smolyar IV, Zweng MM, 2013. World Ocean Database 2013. S. Levitus, Ed., A. Mishonov Tech. Ed., NOAA Atlas NESDIS 72, 209pp

  • Carvalho JPS, Costa FB, Mignac D, Tanajura CAS (2019) Assessing the extended-range predictability of the ocean model HYCOM with the REMO ocean data assimilation system (RODAS) in the South Atlantic, J Oper Oceanogr. https://doi.org/10.1080/1755876X.2019.1606880

  • Castruccio F, Verron J, Gourdeau L, Brankart JM, Brasseur P (2008) Joint altimetric and in-situ data assimilation using the GRACE mean dynamic topography: a 1993–1998 hindcast experiment in the Tropical Pacific Ocean. Ocean Dyn 58:43–63. https://doi.org/10.1007/s10236-007-0131-4

    Article  Google Scholar 

  • Chassignet E, Hurlburt H, Metzger E, Smedstad O, Cummings J, Halliwell G, Bleck R, Baraille R, Wallcraft A, Lozano C, Tolman H, Srinivasan A, Hankin S, Conillon P, Weisberg R, Barth A, He R, Werner F, Wilkin J (2009) US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanogr 22:64–75

    Article  Google Scholar 

  • Conkright ME, Locarnini RA, Garcia HE, O’Brien TD, Boyer TP, Stephens C, Antonov JI (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures. CD-ROM documentation. National Oceanographic Data Center, Silver Spring, MD

    Google Scholar 

  • Cooper M, Haines K (1996) Altimetric assimilation with water property conservation. J Geophys Res 101(C1):1059–1077

    Article  Google Scholar 

  • Costa F, Tanajura C (2015) Assimilation of sea-level anomalies and Argo data into HYCOM and its impact on the 24 hour forecasts in the western tropical and South Atlantic. J Oper Oceanogr 8:52–62. https://doi.org/10.1080/1755876X.2015.1014646

    Article  Google Scholar 

  • Counillon F, Bertino L (2009) High-resolution ensemble forecasting for the Gulf of Mexico eddies and fronts. Ocean Dyn 59:83–95

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data analysis. Cambridge Univ. Press, Cambridge, 457 pp

  • Evans DL, Signorini SR (1985) Vertical structure of the Brazil Current. Nature 315:48–50

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Evensen G (2006) Data assimilation: The ensemble Kalman filter. Springer, New York

    Google Scholar 

  • Ezer T, Mellor GL (1997) Data assimilation experiments in the Gulf Stream region: how useful are satellite-derived surface data for nowcasting the subsurface fields? J Atmosph Oceanogr Tech 14:1379–1391

    Article  Google Scholar 

  • Gabioux M, Costa VS, Souza JMAC, Oliveira BF, Paiva AM (2013) Modeling the South Atlantic Ocean from medium to high-resolution. Rev Bras Geofis 31:229–242

    Article  Google Scholar 

  • Garfield N (1990) The Brazil Current at subtropical latitudes. Ph.D. Thesis, University of Rhode Island, 121 pp

  • Garzoli SL (1993) Geostrophic velocity and transport variability in the Brazil/Malvinas confluence. Deep-Sea Res 40:1379–1403

    Article  Google Scholar 

  • Gaspari G, Cohn SE (1999) Construction of correlation functions in two and three dimensions. Q J R Meteorol Soc 125:723–757

    Article  Google Scholar 

  • GTSPP 2010 Real-time quality control manual, First Revised Edition. UNESCO-IOC 2010, IOC Manuals and Guides No. 22, Revised Edition. https://www.nodc.noaa.gov/GTSPP/document/qcmans/MG22rev1.pdf. Accessed 6 June 2019

  • Hogg NG (1992) On the transport of the Gulf Stream between Cape Hatteras and the Grand Banks. Deep Sea Research Part A: Oceanographic Research Papers 39:1231–1246. https://doi.org/10.1016/0198-0149(92)90066-3

    Article  Google Scholar 

  • Johns WE, Shay TJ, Bane JM, Watts DR (1995) Gulf Stream structure, transport, and recirculation near 68°W. J Geophys Res:Oceans 100:817–838. https://doi.org/10.1029/94JC02497

    Article  Google Scholar 

  • Kalnay E (2003) Atmospheric modeling, data assimilation and predictability. Cambridge University Press, New York

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437–472

    Article  Google Scholar 

  • Large WG, Mcwilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Lea DJ, Martin MJ, Oke PR (2014) Demonstrating the complementarity of observations in an operational ocean forecasting system. Q J R Meteorol Soc 140:2037–2049. https://doi.org/10.1002/qj.2281

    Article  Google Scholar 

  • Lea DJ, Mirouze I, Martin MJ, King RR, Hines A, Walters D, Thurlow M (2015) Assessing a new coupled data assimilation system based on the Met Office coupled atmosphere–land–ocean–sea ice model. Mon Weather Rev 143:4678–4694. https://doi.org/10.1175/MWR-D-15-0174.1

    Article  Google Scholar 

  • Lima JAM (1997) Oceanic circulation on the Brazilian shelf break and slope at 22°S, Ph.D. In: Thesis. University of New South Wales, Australia

    Google Scholar 

  • Lima LN, Tanajura CAS (2013) A study of the impact of altimetry data assimilation on short-term predictability of the HYCOM ocean model in regions of the Tropical and South Atlantic Ocean. Rev Bras Geofis 31:271–288

    Article  Google Scholar 

  • Lima JAM, Martins RP, Tanajura CAS et al (2013) Design and implementation of the Oceanographic Modeling and Observation Network (REMO) for operational oceanography and ocean forecasting. Rev Bras Geofis 31:209–228

  • Lima LN, Pezzi LP, Penny SG, Tanajura CAS (2019) An investigation of ocean model uncertainties through ensemble forecast experiments in the southwest Atlantic Ocean. J Geophys Res: Oceans 124:432–452. https://doi.org/10.1029/2018JC013919

    Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: temperature. In: Levitus S (ed) NOAA Atlas NESDIS, vol 68. U.S. Government Printing Office, Washington, p 184

    Google Scholar 

  • Lorenc AC (2003) The potential of the ensemble Kalman filter for NWP – a comparison with 4D-Var. Q J R Meteorol Soc 129:3183–3203

    Article  Google Scholar 

  • Martin MJ, Balmaseda M, Bertino L (2015) Status and future of data assimilation in operational oceanography. J Oper Oceanogr 8:S28–S48. https://doi.org/10.1080/1755876X.2015.1022055

    Article  Google Scholar 

  • Melo RL, Freitas ACN, Russo L, Oliveira JF, Tanajura CAS, Alvarenga JBR (2013) Ocean forecasts in the southwestern Atlantic: impact of different sources of sea surface height in data assimilation. Rev Bras Geofis 31:243–255

    Article  Google Scholar 

  • Mignac D, Tanajura CAS, Santana A, Lima LN, Xie J (2015) Argo data assimilation into HYCOM with an EnOI method in the Atlantic Ocean. Ocean Sci 11:195–213. https://doi.org/10.5194/os-11-195-2015

    Article  Google Scholar 

  • Moore A, Arango H, Broquet G, Powell B, Weaver AT, Zavala-Garay J (2011) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: I - system overview and formulation. Progress Oceanogr 91:34–49

    Article  Google Scholar 

  • Oke PR, Sakov P (2008) Representation error of oceanic observations for data assimilation. J Atmos Ocean Tech 25:1004–1017

    Article  Google Scholar 

  • Oke PR, Schiller A (2007) Impact of Argo, SST, and altimeter data on an eddy-resolving ocean reanalysis. Geophys Res Lett 34:L19601. https://doi.org/10.1029/2007GL031549

    Article  Google Scholar 

  • Oke PR, Brassington G, Griffin DA, Schiller A (2008) The Bluelink ocean data assimilation system (BODAS). Ocean Model 21:46–70

    Article  Google Scholar 

  • Oke PR, Sakov P, Cahill ML, Dunn JR, Fiedler R, Griffin DA, Mansbridge JV, Ridgway KR, Schiller A (2013) Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model 67:52–70. https://doi.org/10.1016/j.ocemod.2013.03.008

    Article  Google Scholar 

  • Oke P, Larnicol G, Fujii Y, Smith G, Lea D, Guinehut S, Remy E, Balmaseda M, Rykova T, Surcel-Colan D et al (2015a) Assessing the impact of observations on ocean forecasts and reanalyses: Part 1, Global studies. J Oper Oceanogr 8(spu1):s49–s62. https://doi.org/10.1080/1755876X.2015.1022067

    Article  Google Scholar 

  • Oke PR, Larnicol G, Jones EM, Kourafalou V, Sperrevik AK, Carse F, Tanajura CAS, Mourre B, Tomani M, Brassington G, Le Henaff M, Halliwell GR, Atlas R, Moore AM, Edwards CA, Martin MJ, Sellar AA, Alvarez A, De Mey P, Iskandarani M (2015b) Assessing the impact of observations on ocean forecasts and reanalyses: part 2, regional applications. J Oper Oceanogr 8(sup1):s63–s79. https://doi.org/10.1080/1755876X.2015.1022080

    Article  Google Scholar 

  • Penny SG, Hamill TM (2017) Coupled data assimilation for integrated earth system analysis and prediction. Bull Amer Meteor Soc 98:ES169–ES172. https://doi.org/10.1175/BAMS-D-17-0036.1

    Article  Google Scholar 

  • Penny SG, Behringer DW, Carto JA, Kalnay E (2015) A hybrid global ocean data assimilation system at NCEP. Mon Weather Rev 143:4660–4677. https://doi.org/10.1175/MWR-D-14-00376.1

    Article  Google Scholar 

  • Rio MH, Mulet S, Picot N (2014) Beyond GOCE for the ocean circulation estimate: synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophys Res Lett 41:8918–8925. https://doi.org/10.1002/2014GL061773

    Article  Google Scholar 

  • Rossby T, Flagg CN, Donohue K, Sanchez-Franks A, Lillibridge J (2014) On the long-term stability of Gulf Stream transport based on 20 years of direct measurements. Geophys Res Lett 41:114–120. https://doi.org/10.1002/2013GL058636

    Article  Google Scholar 

  • Schiller A, Mourre B, Drillet Y, Brassington G (2018) An overview of operational oceanography. In Chassignet E, Pascual A, Tintoré J, Verron J (ed) New frontiers in operational oceanography:1–26. https://doi.org/10.17125/gov2018.ch01

    Google Scholar 

  • Silveira IC, Calado L, Castro BM, Cirano M, Lima JAM, Mascarenhas AS (2004) On the baroclinic structure of the Brazil Current-Intermediate Western Boundary Current system at 22°S-23°S. Geophys Res Lett 31:L14308. https://doi.org/10.1029/2004GL020036

    Article  Google Scholar 

  • Stramma L (1991) Geostrophic transport of the South Equatorial Current in the Atlantic. J Mar Res 49:281–294

    Article  Google Scholar 

  • Su Z, Ingersoll AP (2016) On the minimum potential energy state and the eddy-size-constrained APE density. J Phys Oceanogr 46:2663–2674. https://doi.org/10.1175/JPO-D-16-0074.1

    Article  Google Scholar 

  • Su Z, Stewart AL, Thompson AF (2014) An idealized model of Weddell Gyre export variability. J Phys Oceanogr 44:1671–1688. https://doi.org/10.1175/JPO-D-13-0263.1

    Article  Google Scholar 

  • Su Z, Wang J, Klein P, Thompson AF, Menemenlis D (2018) Ocean submesoscales as a key component of the global heat budget. Nat Commun 9:775. https://doi.org/10.1038/s41467-018-02983-w

    Article  Google Scholar 

  • Tanajura C, Costa F, Ramos da Silva R, Ruggiero G, Daher V (2013) Assimilation of sea surface height anomalies into HYCOM with an optimal interpolation scheme over the Atlantic Ocean Metarea V. Rev Bras Geofís 31:257–270

    Article  Google Scholar 

  • Tanajura CAS, Santana A, Mignac D, Lima L, Belyaev K, Ji-Ping X (2014) The REMO Ocean Data Assimilation System into HYCOM (RODAS_H): general description and preliminary results. J Atmos Oceanic Sci Lett 7:464–470. http://159.226.119.58/aosl/EN/10.3878/j.issn.1674-2834.14.0011

  • Thacker W, Esenkov OE (2002) Assimilating XBT data into HYCOM. J Atmos Ocean Tech 19:709–724

    Article  Google Scholar 

  • Tranchant B, Remy E, Greiner E, Legalloudec O (2019) Data assimilation of Soil Moisture and Ocean Salinity (SMOS) observations into the Mercator Ocean operational system: focus on the El Niño 2015 event. Ocean Sci 15:543–563. https://doi.org/10.5194/os-15-543-2019

    Article  Google Scholar 

  • Weaver AT, Vialard J, Anderson DLT (2003) Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. Part I: formulation, internal diagnostics, and consistency check. Mon Weather Rev 131:1360–1378

    Article  Google Scholar 

  • Xie J, Zhu J (2010) Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Model 33:283–298

    Article  Google Scholar 

  • Xie J, Counillon F, Zhu J, Bertino L (2011) An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci 7:609–627

    Article  Google Scholar 

  • Yan CX, Zhu J, Xie JP (2010) An ocean reanalysis system for the joining area of Asia and Indian-Pacific Ocean. J Atmos Ocean Sci Lett 3:81–86

    Article  Google Scholar 

Download references

Funding

This work was financially supported by PETROBRAS and the Brazilian oil regulatory agency ANP (Agência Nacional de Petróleo, Gás Natural e Biocombustíveis), within the special participation research project Oceanographic Modeling and Observation Network (REMO). Part of the infrastructure to develop this work was offered by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the research grant 446528/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemente A. S. Tanajura.

Additional information

Responsible Editor: Tal Ezer

This article is part of the Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO), Santos, Brazil, 25-28 June 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanajura, C.A.S., Mignac, D., de Santana, A.N. et al. Observing system experiments over the Atlantic Ocean with the REMO ocean data assimilation system (RODAS) into HYCOM. Ocean Dynamics 70, 115–138 (2020). https://doi.org/10.1007/s10236-019-01309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01309-8

Keywords

Navigation