Skip to main content
Log in

Modelling the effects of Zostera noltei meadows on sediment dynamics: application to the Arcachon lagoon

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A three-dimensional model has been modified to describe the complex interactions between hydrodynamics, sediment dynamics and biological parameters in the presence of Zostera noltei. The model treats seagrass leafs as flexible blades that bend under hydrodynamic forcing and alter the local momentum and turbulence fluxes and, therefore, the benthic shear conditions; these changes cause related changes to the mass balance at the boundary of the bed, in turn affecting the suspended matter in the column and ultimately primary productivity and the growth of the dwarf-grass. Modelling parameters related to the impact of Z. noltei to the local flow and to erosion and deposition rates were calibrated using flume experimental measurements; results from the calibration of the model are presented and discussed. The coupled model is applied in the Arcachon Bay, an area with high environmental significance and large abundance of dwarf-grass meadows. In the present paper, results from preliminary applications of the model are presented and discussed; the effectiveness of the coupled model is assessed comparing modelling results with available field measurements of suspended sediment concentrations and seagrass growth parameters. The model generally reproduces sediment dynamics and dwarf-grass seasonal growth in the domain efficiently. Investigations regarding the effects of the vegetation to the near-bed hydrodynamics and to the sediment suspension in the domain show that dwarf-grass meadows play an important part to velocity attenuation and to sediment stabilisation, with flow and suspended sediment concentrations damping, compared to an unvegetated state, to reach 35–50 and 65 %, respectively, at peak seagrass growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ackerman JD, Okubo A (1993) Reduced mixing in a marine macrophyte canopy. Funct Ecol 7(3):305–309

    Article  Google Scholar 

  • Auby I, Labourg P-J (1996) Seasonal dynamics of Zostera noltii hornem. in the Bay of Arcachon (France). J Sea Res 35(4):269–277

    Article  Google Scholar 

  • Backhaus JO, Verduin JJ (2008) Simulating the interaction of seagrasses with their ambient flow. Estuar Coast Shelf Sci 80:563–572

    Article  Google Scholar 

  • Bouma TJ, De Vries MB, Low E, Kusters L, Herman PMJ, Tánczos IC, Temmerman S, Hesselink A, Meire P, van Regenmortel S (2005a) Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia 540:259–274

    Article  Google Scholar 

  • Bouma TJ, De Vries MB, Low E, Peralta G, Tánczos IC, van de Koppel J, Herman PMJ (2005b) Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86(8):2187–2199

    Article  Google Scholar 

  • Bouma TJ, Friedrichs M, Klaassen P, van Wesenbeeck BK, Brun FG (2009) Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules. Mar Ecol Prog Ser 388:293–297

    Article  Google Scholar 

  • Cayocca F (2001) Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coast Eng 42:115–142

    Article  Google Scholar 

  • Cholvy J.P. (2008) Quantifier et qualifier la fréquentation touristique du Bassin d'Arcachon. Rapport SIBA (in French)

  • Dauby P, Bale AJ, Bloomer N, Canon C, Ling RD, Norro A, Robertson JE, Simon A, Théate JM, Watson AJ, Frankignoulle M (1995) Particle fluxes over a Mediterranean seagrass bed: a one year case study. Mar Ecol Prog Ser 126:233–246

    Article  Google Scholar 

  • Defina A, Bixio AC (2005) Mean flow and turbulence in vegetated open channel flow. Water Resour Res 41, W07006. doi:10.1029/2004WR003475

    Article  Google Scholar 

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE-IFS atmosphere model: a contribution to the French community climate modelling. Clim Dyn 10:249–266

    Article  Google Scholar 

  • Fabrègues L (2005) Arcachon, l'année des records. Le Marin - hors série - Ports de pêche, avril 2005 (in French)

  • Fischer-Antze T, Stoesser T, Bates P, Olsen NRB (2001) 3D numerical modelling of open-channel flow with submerged vegetation. J Hydraul Res 39(3):303–310

    Article  Google Scholar 

  • Fonseca MS, Fisher JS (1986) A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration. Mar Ecol Prog Ser 29:15–22

    Article  Google Scholar 

  • Fonseca MS, Koehl MAR (2006) Flow in seagrass canopies: the influence of patch width. Estuar Coast Shelf Sci 67:1–9

    Article  Google Scholar 

  • Gacia E, Granata TC, Duarte CM (1999) An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquat Bot 65(1–4):255–268

    Article  Google Scholar 

  • Gambi MC, Nowell AR, Jumars PA (1990) Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61:159–169

    Article  Google Scholar 

  • Ganthy F (2011) Rôle des herbiers de zostères (Zostera noltii) sur la dynamique sédimentaire du Bassin d’Arcachon. Dissertation, University of Bordeaux

  • Ganthy F, Verney R, Sottolichio A (2013a) Seasonal modification of tidal flat sediment dynamics by seagrass meadows of Zostera noltii (Bassin d'Arcachon, France). J Mar Syst 109–110:S233–S240

    Article  Google Scholar 

  • Ganthy F, Verney R, Sottolichio A (2013b) A numerical investigation on the effects of small and flexible seagrass Zostera noltii on water flow. Proc Coast Dyn 2013:705–716

    Google Scholar 

  • Ghisalberti M, Nepf H (2002) Mixing layers and coherent structures in vegetated aquatic flow. J Geophys Res 107(C2):1–11

    Google Scholar 

  • Ghisalberti M, Nepf H (2006) The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6:277–301

    Article  Google Scholar 

  • Ghisalberti M, Nepf H (2009) Shallow flows over a permeable medium: the hydrodynamics of submerged aquatic canopies. Transp Porous Media 78:309–326

    Article  Google Scholar 

  • Grizzle RE, Short FT, Newell CR, Hoven H, Kindblom L (1996) Hydrodynamically induced synchronous waving of seagrasses: ‘monami’ and its possible effects on larval mussel settlement. J Exp Mar Biol Ecol 206:165–177

    Article  Google Scholar 

  • Guillaud J-F, Andrieux F, Ménesguen A (2000) Biogeochemical modelling in the Bay of Seine (France): an improvement by introducing phosphorus in nutrient cycles. J Mar Syst 25:369–386

    Article  Google Scholar 

  • Henocque Y (2003) Development of process indicators for coastal zone management assessment in France. Ocean Coast Manag 46(3–4):363–379

    Article  Google Scholar 

  • Huret M, Sourisseau M, Petitgas P, Struski C, Léger F, Lazure P (2013) A multi-decadal hindcast of a physical–biogeochemical model and derived oceanographic indices in the Bay of Biscay. J Mar Syst 109–110:S77–S94

    Article  Google Scholar 

  • Kombiadou K, Verney R, Plus M, Ganthy F (2013) Développement d’un modèle intégré pour le Bassin d’Arcachon. Dynamique sédimentaire en lien avec la dynamique des herbiers de zostères. Final Report, Ifremer (in French)

  • Lazure P, Dumas F (2008) An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31:233–250

    Article  Google Scholar 

  • Le Berre S, Franz T, Brigand L (2009) Etude de la fréquentation nautique du bassin d'Arcachon - Premiers résultats quantitatifs et cahier des charges méthodologique. Rapport intermédiaire. Direction régionale des affaires maritimes, Aquitaine - service départemental Arcachon - Géomer, UMR 6554 LETG - Université de Bretagne Occidentale (in French)

  • Le Hir P, Cayocca F, Waeles B (2011) Dynamics of sand and mud mixtures: a multiprocess-based modelling strategy. Cont Shelf Res 31:S135–S149

    Article  Google Scholar 

  • Lefebvre A, Thompson CEL, Amos CL (2010) Influence of Zostera marina canopies on unidirectional flow, hydraulic roughness and sediment movement. Cont Shelf Res 30:1783–1794

    Article  Google Scholar 

  • Lopez F, Garcia M (2001) Mean flow and turbulence structure of open-chanel flow through non-emergent vegetation. J Hydraul Eng 127:392–402

    Article  Google Scholar 

  • Lyard F, Lefèvre F, Letellier T, Francis O (2006) Modelling the global ocean tides: a modern insight from FES2004. Ocean Dyn 56:394–415

    Article  Google Scholar 

  • Milbradt P, Schonert T (2008) Eco-hydraulic simulation in coastal engineering. J Hydroinformatics 10–3:201–214

    Article  Google Scholar 

  • Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56(3):753–777

    Article  Google Scholar 

  • Nepf HM, Vivoni ER (2000) Flow structure in depth-limited vegetated flow. J Geophys Res 105C12:28547–28557

    Article  Google Scholar 

  • Neumeier U, Amos CL (2006) The influence of vegetation on turbulence and flow velocities in European salt-marshes. Sedimentology 53:259–277

    Article  Google Scholar 

  • Orvain F, Le Hir P, Sauriau P-G (2003) A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae. J Mar Res 61:823–851

    Article  Google Scholar 

  • Paolin M (2012) Etudes des facteurs contrôlant l’atténuation lumineuse dans une lagune semi-fermée. Calibration d’un modèle bio-optique pour le Bassin d’Arcachon. Technical Report, Ifremer (in French)

  • Plus M, Chapelle A, Ménesguen A, Deslous-Paoli J-M, Auby I (2003) Modelling seasonal dynamics of biomasses and nitrogen contents in a seagrass meadow (Zostera noltii Hornem.): application to the Thau lagoon (French Mediterranean coast). Ecol Model 161(3):213–238

    Article  Google Scholar 

  • Plus M, Dumas F, Stanisiére J-Y, Maurer D (2009) Hydrodynamic characterization of the Arcachon Bay, using model-derived descriptors. Cont Shelf Res 29:1008–1013

    Article  Google Scholar 

  • Plus M, Dalloyau S, Trut G, Auby I, de Montaudouin X, Emery E, Noël C, Viala C (2010) Long-term evolution (1988–2008) of Zostera spp. meadows in Arcachon Bay (Bay of Biscay). Estuar Coast Shelf Sci 87:357–366

    Article  Google Scholar 

  • Righetti M, Armanini A (2002) Flow resistance in open channel flows with sparsely distributed bushes. J Hydrol 269:55–64

    Article  Google Scholar 

  • Rominger JT, Nepf HM (2011) Flow adjustment and interior flow associated with a rectangular porous obstruction. J Fluid Mech 680:636–659

    Article  Google Scholar 

  • Scourzic T, Loyen M, Fabre E, Tessier A, Dalias N, Trut G, Maurer D, Simmonet B (2011) Evaluation du stock d'huîtres sauvages et en élevage dans le Bassin d'Arcachon. Contrat Agence des Aires Marines Protégées & OCEANIDE, 63p

  • Temmerman S, Bouma TJ, Govers G, Wang ZB, De Vries MB, Herman PMJ (2005) Impact of vegetation on flow routing and sedimentation patterns: three-dimensional modelling for a tidal marsh. J Geophys Res 110, F04019. doi:10.1029/2005JF000301

    Google Scholar 

  • Thompson CEL, Amos CL, Umgiesser G (2004) A comparison between fluid shear stress reduction by halophytic plants in Venice Lagoon, Italy and Rustico Bay, Canada—analyses of in situ measurements. J Mar Syst 51(1–4):293–308

    Article  Google Scholar 

  • Verduin JJ, Backhaus JO (2000) Dynamics of plant-flow interactions for the seagrass Amphibolis antartica: field observations and model simulations. Estuar Coast Shelf Sci 50:185–204

    Article  Google Scholar 

  • Widdows J, Pope ND, Brinsley MD, Asmus H, Asmus RM (2008) Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Mar Ecol Prog Ser 358:125–126

    Article  Google Scholar 

Download references

Acknowledgements

The work presented was funded by SIBA (Syndicat Intercommunal du Bassin d’Arcachon) and IFREMER (Institut Français de Recherche pour l'Exploitation de la Mer) and partly by the French Research National Agency program ANR IZOFLUX. The authors wish to thank Isabelle Auby and Mélina Paolin (IFREMER) for kindly permitting the reproduction of field measurements from the Arcachon lagoon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Kombiadou.

Additional information

Responsible Editor: Jörg-Olaf Wolff

This article is part of the Topical Collection on the 7th International Conference on Coastal Dynamics in Arcachon, France 24–28 June 2013

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kombiadou, K., Ganthy, F., Verney, R. et al. Modelling the effects of Zostera noltei meadows on sediment dynamics: application to the Arcachon lagoon. Ocean Dynamics 64, 1499–1516 (2014). https://doi.org/10.1007/s10236-014-0754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-014-0754-1

Keywords

Navigation