Skip to main content
Log in

Isoparametric functions and mean curvature in manifolds with Zermelo navigation

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The generalized Zermelo navigation problem looks for the shortest time paths in an environment, modeled by a Finsler manifold (MF), under the influence of wind or current, represented by a vector field W. The main objective of this paper is to investigate the relationship between the isoparametric functions on the manifold M with and without the presence of the vector field W. Our work generalizes results in (Dong and He in Differ Geom Appl 68:101581, 2020; He et al. in Acta Math Sinica Engl Ser 36:1049–1060, 2020; He et al. in Differ Geom Appl 84:101937, 2022; Ming et al. in Pub Math Debr 97:449–474, 2020; Xu et al. in Isoparametric hypersurfaces induced by navigation in Lorentz Finsler geometry, 2021). For the positive-definite cases, we also compare the mean curvatures in the manifold. Overall, we follow a coordinate-free approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alexandrino, M.M.: Hipersuperfícies de nível de uma função transnormal. Master’s thesis, Pontifícia Universidade Católica do Rio de Janeiro. (1997)

  2. Alexandrino, M.M., Alves, B.O., Dehkordi, H.R.: On Finsler transnormal functions. Differ. Geom. Appl. 65, 93–107 (2019)

    MathSciNet  Google Scholar 

  3. Anastasiei, M., Kawaguchi, H.: Absolute energy of a Finsler space can’t be harmonique. Tensor New Ser. 53, 108–114 (1993)

    Google Scholar 

  4. Antonelli, P.L., Zastawniak, T.J.: Stochastic calculus on Finsler manifolds and an application in biology. Nonlinear World 1, 149–171 (1993)

    MathSciNet  Google Scholar 

  5. Balan, V.: BH-mean curvature in Randers spaces with anisotropically scaled metric, Proceedings of The International Conference “Differential Geometry and Dynamical Systems” (DGDS-2007) (Constantin Udriste and Vladimir Balan, eds.), Geometry Balkan Press, (2008), pp. 34–39

  6. Bao, D., Lackey, B.: A Hodge decomposition theorem for Finsler spaces, Comptes rendus de l’Académie des sciences. Série 1. Mathématique 323(1), 51–56 (1996)

    MathSciNet  Google Scholar 

  7. Bao, D., Lackey, B.: Special eigenforms on the sphere bundle of a Finsler manifold. Contemp. Math. 196, 67–78 (1996)

    MathSciNet  Google Scholar 

  8. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66(3), 377–435 (2004)

    MathSciNet  Google Scholar 

  9. Bellettini, G., Paolini, M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25(3), 537–566 (1996)

    MathSciNet  Google Scholar 

  10. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, (2001)

  11. Caponio, E., Javaloyes, M.A., Sánchez, M.: Wind Finslerian structures: from Zermelo’s navigation to the causality of spacetimes, arXiv:1407.5494, (2014)

  12. Cartan, É.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Annali di Mat. 17(1), 177–191 (1938)

    MathSciNet  Google Scholar 

  13. Cartan, É.: Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. Math. Z. 45(1), 335–367 (1939)

    MathSciNet  Google Scholar 

  14. Chakerian, G.D.: Integral geometry in Minkowski spaces. Contemp. Math. 196, 43–50 (1996)

    MathSciNet  Google Scholar 

  15. Chen, Y., He, Q.: Transnormal functions and focal varieties on Finsler manifolds. J. Geom. Anal. 33(4), 128 (2023)

  16. Chen, Y., He, Q.: The isoparametric functions on a class of Finsler spheres. Differ. Geom. Appl. 86, 101970 (2023)

    MathSciNet  Google Scholar 

  17. Chi, Q.-S.: Isoparametric hypersurfaces with four principal curvatures. IV J. Differ. Geom. 115(2), 225–301 (2020)

    MathSciNet  Google Scholar 

  18. Crişan, A.V., Vancea, I.V.: Finsler geometries from topological electromagnetism. Eur. Phys. J. C 80(6), 1–12 (2020)

    Google Scholar 

  19. Cui, N.: On minimal surfaces in a class of Finsler \(3\)-spheres. Geom. Dedicata. 168(1), 87–100 (2014)

    MathSciNet  Google Scholar 

  20. Cui, N., Shen, Y.-B.: Nontrivial minimal surfaces in a hyperbolic Randers space. Math. Nachr. 290(4), 570–582 (2017)

    MathSciNet  Google Scholar 

  21. Cvetič, M., Gibbons, G.W.: Graphene and the Zermelo optical metric of the BTZ black hole. Ann. Phys. 327(11), 2617–2626 (2012)

    MathSciNet  Google Scholar 

  22. Rosangela Maria da Silva and Keti Tenenblat: Minimal surfaces in a cylindrical region of \(\mathbb{R} ^3\) with a Randers metric. Houst. J. Math. 37(3), 745–771 (2011)

    Google Scholar 

  23. Rosângela Maria da Silva and Keti Tenenblat: Helicoidal minimal surfaces in a Finsler space of Randers type. Can. Math. Bull. 57(4), 765–779 (2014)

    MathSciNet  Google Scholar 

  24. Dehkordi, H.R., Saa, A.: Huygens’ envelope principle in Finsler spaces and analogue gravity. Class. Quantum Gravity 36(8), 085008 (2019)

    MathSciNet  Google Scholar 

  25. Dong, P., Chen, Y.: Isoparametric hypersurfaces and hypersurfaces with constant principal curvatures in Finsler spaces, arXiv:2210.12937, (2022)

  26. Dong, P., He, Q.: Isoparametric hypersurfaces of a class of Finsler manifolds induced by navigation problem in Minkowski spaces. Differ. Geom. Appl. 68, 101581 (2020)

    MathSciNet  Google Scholar 

  27. Ge, J., Ma, H.: Anisotropic isoparametric hypersurfaces in Euclidean spaces. Ann. Glob. Anal. Geom. 41(3), 347–355 (2012)

    MathSciNet  Google Scholar 

  28. Gibbons, G.W., Herdeiro, C.A.R., Warnick, C.M., Werner, M.C.: Stationary metrics and optical Zermelo-Randers-Finsler geometry. Phys. Rev. D 79(4), 044022 (2009)

    MathSciNet  Google Scholar 

  29. Gibbons, G.W., Warnick, C.M.: The geometry of sound rays in a wind. Contemp. Phys. 52(3), 197–209 (2011)

    Google Scholar 

  30. He, Q., Dong, P.L., Yin, S.T.: Classifications of isoparametric hypersurfaces in Randers space forms. Acta Math. Sinica Engl. Ser. 36(9), 1049–1060 (2020)

    MathSciNet  Google Scholar 

  31. He, Q., Huang, X., Dong, P.: Isoparametric hypersurfaces in conic Finsler manifolds. Differ. Geom. Appl. 84, 101937 (2022)

    MathSciNet  Google Scholar 

  32. He, Q., Yin, S., Shen, Y.: Isoparametric hypersurfaces in Minkowski spaces. Differ. Geom. Appl. 47, 133–158 (2016)

    MathSciNet  Google Scholar 

  33. He, Q., Yin, S.T., Shen, Y.B.: Isoparametric hypersurfaces in Funk spaces. Sci. China Math. 60(12), 2447–2464 (2017)

    MathSciNet  Google Scholar 

  34. Herrera, J., Javaloyes, M.A.: Stationary-Complete Spacetimes with non-standard splittings and pre-Randers metrics. J. Geom. Phys. 163, 104120 (2021)

    MathSciNet  Google Scholar 

  35. Huang, L., Mo, X.: On geodesics of Finsler metrics via navigation problem. Procee. Am. Math. Soc. 139(8), 3015–3024 (2011)

    MathSciNet  Google Scholar 

  36. Javaloyes, M.A.: Chern connection of a pseudo-Finsler metric as a family of affine connections. Pub. Math. Debr. 84(1–2), 29–43 (2014)

    MathSciNet  Google Scholar 

  37. Javaloyes, M.A, Pendás-Recondo, E., Sánchez, M.: A general model for wildfire propagation with wind and slope. SIAM J. Appl. Algebra Geom. 7(2), 414–439 (2023)

  38. Javaloyes, M.A., Pendás-Recondo, E., Sánchez, M.: Applications of cone structures to the anisotropic rheonomic Huygens’ principle. Nonlinear Anal. 209, 112337 (2021)

    MathSciNet  Google Scholar 

  39. Javaloyes, M.A., Sanchez, M.: On the definition and examples of Finsler metrics, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 13(5), 813–858 (2014)

    Google Scholar 

  40. Javaloyes, M.A., Sánchez, M.: On the definition and examples of cones and Finsler spacetimes, Revista de la Real Academia de Ciencias Exactas. Físicas y Nat. Serie A. Matemáticas 114(1), 1–46 (2020)

    Google Scholar 

  41. Javaloyes, M.A., Vitório, H.: Some properties of Zermelo navigation in pseudo-Finsler metrics under an arbitrary wind. Houst. J. Math. 44(4), 1147–1179 (2018)

    MathSciNet  Google Scholar 

  42. Laura, E.: Sopra la propagazione di onde in un mezzo indefinito, Scritti Matematici Offerti ad Enrico D’Ovidio (1918), 253–278

  43. Levi-Civita, T.: Famiglie di superficie isoparametriche nell’ordinario spazio Euclideo, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali 26, 657–664 (1937)

    Google Scholar 

  44. Markvorsen, S.: A Finsler geodesic spray paradigm for wildfire spread modelling. Nonlinear Anal. Real World Appl. 28, 208–228 (2016)

    MathSciNet  Google Scholar 

  45. Miyaoka, R.: Transnormal functions on a Riemannian manifold. Differ. Geom. Appl. 31(1), 130–139 (2013)

    MathSciNet  Google Scholar 

  46. Qian, Y., He, Q., Chen, Y.: Hypersurfaces with Constant Mean Curvature on Finsler manifolds, arXiv:2203.09712, (2022)

  47. Robles, C.: Geodesics in Randers spaces of constant curvature. Trans. Am. Math. Soc. 359(4), 1633–1651 (2007)

    MathSciNet  Google Scholar 

  48. Schneider, R., Wieacker, J.A.: Integral geometry in Minkowski spaces. Adv. Math. 129(2), 222–260 (1997)

    MathSciNet  Google Scholar 

  49. Segre, B.: Una proprieta caratteristica di tre sistemi \(\infty ^{1}\) di superficie, Atti della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematiche e Naturali 59, 666–671 (1924)

    Google Scholar 

  50. Segre, B.: Famiglie di ipersuperficie isoparametriche negli spazi euclidei ad un qualunque numero di dimensioni, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali 27, 203–207 (1938)

    Google Scholar 

  51. Shen, Y.B., Shen, Z.: Introduction to modern Finsler geometry. World Scientific Publishing Company, Singapore (2016)

    Google Scholar 

  52. Shen, Z.: Curvature, distance and volume in Finsler geometry, Tech. Report IHES/M/97/48, Institut des Hautes Études Scientifiques, (1997)

  53. Shen, Z.: On Finsler geometry of submanifolds. Math. Ann. 311(3), 549–576 (1998)

    MathSciNet  Google Scholar 

  54. Shen, Z.: The non-linear Laplacian for Finsler manifolds, The theory of Finslerian Laplacians and applications (Peter L Antonelli and Bradley C Lackey, eds.), Springer, (1998), pp. 187–198

  55. Shen, Z.: Lectures on Finsler geometry. World Scientific, Singapore (2001)

    Google Scholar 

  56. Shen, Z.: Finsler Metrics with \(K=0\) and \(S=0\). Can. J. Math. 55(1), 112–132 (2003)

    Google Scholar 

  57. Somigliana, C.: (1918–1919) Sulle relazione fra il principio di Huygens e l’ottica geometrica, Atti della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematiche e Naturali 54, 974–979

  58. Souza, M., Spruck, J., Tenenblat, K.: A Bernstein type theorem on a Randers space. Math. Ann. 329(2), 291–305 (2004)

    MathSciNet  Google Scholar 

  59. Souza, M., Tenenblat, K.: Minimal surfaces of rotation in Finsler space with a Randers metric. Math. Ann. 325(4), 625–642 (2003)

    MathSciNet  Google Scholar 

  60. Thorbergsson, Gudlaugur, A survey on isoparametric hypersurfaces and their generalizations, Handbook of Differential Geometry (Franki JE Dillen and Leopold CA Verstraelen, eds.), 1, Elsevier, (1999), 963–995

  61. Wang, Q.-M.: Isoparametric functions on Riemannian manifolds. I, Math. Annalen 277(4), 639–646 (1987)

    MathSciNet  Google Scholar 

  62. Bing Ye Wu: A local rigidity theorem for minimal surfaces in Minkowski 3-space of Randers type. Ann. Glob. Anal. Geom. 31(4), 375–384 (2007)

    MathSciNet  Google Scholar 

  63. Ming, X.: Isoparametric hypersurfaces in a Randers sphere of constant flag curvature. Annali di Matematica Pura ed Applicata (1923) 197(3), 703–720 (2018)

    MathSciNet  Google Scholar 

  64. Ming, X., Matveev, V., Yan, K., Zhang, S.: Some geometric correspondences for homothetic navigation. Pub. Math. Debr. 97(3–4), 449–474 (2020)

    MathSciNet  Google Scholar 

  65. Xu, M., Tan, J., Xu, N.: Isoparametric hypersurfaces induced by navigation in Lorentz Finsler geometry. Acta Math. Sinica, English Series, 39(8), 1547–1564 (2023)

  66. Yajima, T., Nagahama, H.: Finsler geometry of seismic ray path in anisotropic media. Procee. R. Soc. A Math. Phys. Eng. Sci. 465(2106), 1763–1777 (2009)

    MathSciNet  Google Scholar 

  67. Yoshikawa, R., Sabau, S.V.: Kropina metrics and Zermelo navigation on Riemannian manifolds. Geom. Dedicata. 171(1), 119–148 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benigno Oliveira Alves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Warm thanks to Professors Marcos Alexandrino, Miguel Ángel Javaloyes, and Miguel Domínguez Vázquez for the helpful discussions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, B.O., Marçal, P. Isoparametric functions and mean curvature in manifolds with Zermelo navigation. Annali di Matematica 203, 1285–1310 (2024). https://doi.org/10.1007/s10231-023-01402-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10231-023-01402-2

Keywords

Mathematics Subject Classification

Navigation