Skip to main content
Log in

Groundwater Source Identification and Flow Model of the Dareh-Zar Copper Mine in Central Iran by Chemo-isotopic Techniques

Identifizierung der Grundwasserquellen und Erstellung eines Strömungsmodells für den Dareh-Zar-Kupfererzbergbau im Zentraliran mit Hilfe von Chemoisotopenmethoden

Identificación de la fuente de agua subterránea y modelo de flujo de la mina de cobre de Dareh-Zar en el centro de Irán mediante técnicas quimioisotópicas

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Seepage with AMD characteristics is observed in the Dareh-Zar copper mine in central Iran and more water inrush events are expected since the pit extends below the local groundwater levels. In order to properly design a dewatering system, it was necessary to determine the source of this groundwater and to establish a groundwater flow model. Thirty-nine water samples were collected from springs, qanats, observation wells, seepages, and permanent river water and analyzed for major ions, silica, Fe, Cu, and stable isotopes (18O and 2H). The electrical conductivity and pH of the water samples ranged from 403 to 4810 μS/cm and 3.3 to 8.6, respectively. The PCA and biplot diagrams confirmed the role of mineral weathering, redox reactions (Fe2+ release), and gypsum dissolution on groundwater chemistry outside of the pit and the effects of pyrite oxidation on weathering and dissolution reactions inside the pit. Based on hydraulic features inferred from the iso-potential map of the aquifer and cluster analysis of the chemical data, two distinct groundwater sources from the northwest and east of the mine, with fresh (Ca-HCO3) and brackish (Na-SO4) signatures, respectively, were identified as the possible sources of the Ca-SO4 groundwater in the mine pit. The dramatic difference in Na concentrations in most of the samples does not support groundwater evolution to Ca-SO4 types in the pit simply by mixing. Instead, the Ca-HCO3 groundwaters from the north and northwest areas likely evolve to the Ca-SO4 water-type in the pit due to pyrite oxidation. The stable isotopes indicated groundwater recharge zones at elevations ranging from 2479 to 2877 m above mean sea level, which is, on average, 207 m above the pit area and suggests that the north and northwest recharge zones are the primary source of the groundwater inrushes. These results are being used to help design a dewatering scheme for this mining area.

Zusammenfassung

Im Kupfererzbergbau Dareh-Zar im Zentraliran wird Sickerwasser mit AMD-Eigenschaften beobachtet. Es wird mit weiteren Wassereinbrüchen gerechnet, da die Grube unterhalb des örtlichen Grundwasserspiegels liegt. Um ein sachgerechtes Wasserhaltungssystem auszulegen, war es notwendig, die Grundwassersquellen zu bestimmen und ein Grundwasserströmungsmodell zu erstellen. Neununddreißig Wasserproben wurden aus Quellen, Qanats, Beobachtungsbrunnen, Sickerwasseraustritten und permanentem Flusswasser entnommen und auf Hauptionen, Kieselsäure, Fe, Cu und stabile Isotope (O-18 und H-2) analysiert. Die elektrische Leitfähigkeit und der pH-Wert der Wasserproben reichten von 403 bis 4810 μS/cm bzw. 3,3 bis 8,6. Die PCA- und Biplot-Diagramme bestätigten die Rolle der Mineralverwitterung, der Redoxreaktionen (Fe2+-Freisetzung) und der Gipsauflösung für die Grundwasserchemie außerhalb der Grube sowie die Auswirkungen der Pyritoxidation auf Verwitterungs- und Auflösungsreaktionen innerhalb der Grube. Auf der Grundlage der aus der Isopotentialkarte des Grundwasserleiters abgeleiteten hydraulischen Merkmale und der Clusteranalyse der chemischen Daten wurden zwei unterschiedliche Grundwasserquellen aus dem Nordwesten und Osten der Grube mit frischen (Ca-HCO3) bzw. brackigen (Na-SO4) Signaturen als mögliche Quellen des Ca-SO4-Grundwassers in der Grube identifiziert. Der dramatische Unterschied in den Na-Konzentrationen in den meisten Proben spricht nicht dafür, dass sich das Grundwasser in der Grube einfach durch Vermischung zu Ca-SO4-Typen entwickelt. Stattdessen entwickeln sich die Ca-HCO3-Grundwässer aus den nördlichen und nordwestlichen Gebieten wahrscheinlich durch Pyritoxidation zum Ca-SO4-Wassertyp in der Grube. Die stabilen Isotope wiesen auf Grundwasseranreicherungszonen in Höhen zwischen 2479 und 2877 m über dem mittleren Meeresspiegel hin, was im Durchschnitt 207 m über dem Grubengebiet liegt und darauf schließen lässt, dass die nördlichen und nordwestlichen Anreicherungszonen die Hauptquelle der Grundwassereinbrüche sind. Diese Ergebnisse werden für die Planung eines Wasserhaltungssystems für dieses Bergbaurevier herangezogen.

Resumen

En la mina de cobre de Dareh-Zar, en el centro de Irán, se observan filtraciones con características de AMD y se espera que se produzcan más entradas de agua, ya que el pozo se extiende por debajo de los niveles locales de agua subterránea. Para diseñar adecuadamente un sistema de desagüe, era necesario determinar el origen de estas aguas subterráneas y establecer un modelo de flujo de aguas subterráneas. Se recogieron 39 muestras de agua de manantiales, qanats, pozos de observación, filtraciones y agua fluvial permanente, y se analizaron en busca de iones principales, sílice, Fe, Cu e isótopos estables (18O y 2H). La conductividad eléctrica y el pH de las muestras de agua oscilaron entre 403 y 4810 μS/cm y entre 3,3 y 8,6, respectivamente. Los diagramas PCA y biplot confirmaron el papel de la meteorización mineral, las reacciones redox (liberación de Fe2+) y la disolución de yeso en la química del agua subterránea fuera del pozo y los efectos de la oxidación de la pirita en las reacciones de meteorización y disolución dentro del pozo. Basándose en las características hidráulicas deducidas del mapa isopotencial del acuífero y en el análisis de cluster de los datos químicos, se identificaron dos fuentes distintas de agua subterránea del noroeste y del este de la mina, con firmas frescas (Ca-HCO3) y salobres (Na-SO4), respectivamente, como las posibles fuentes del agua subterránea Ca-SO4 en el pozo de la mina. La dramática diferencia en las concentraciones de Na en la mayoría de las muestras no apoya la evolución del agua subterránea a los tipos Ca-SO4 en el pozo simplemente por mezcla. En cambio, las aguas subterráneas Ca-HCO3 de las zonas norte y noroeste probablemente evolucionan al tipo de agua Ca-SO4 en el pozo debido a la oxidación de la pirita. Los isótopos estables indicaron la existencia de zonas de recarga de aguas subterráneas a una altitud de entre 2.479 y 2.877 m sobre el nivel medio del mar, lo que supone una media de 207 m por encima de la zona del pozo y sugiere que las zonas de recarga del norte y el noroeste son la fuente principal de las entradas de agua subterránea. Estos resultados se están utilizando para ayudar a diseñar un plan de desagüe para esta zona minera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmadi S, Jahanshahi R, Moeini V, Mali S (2018) Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area. Iran Environ Earth Sci 77:212

    Article  Google Scholar 

  • Alegbe MJ, Ayanda OS, Ndungu P, Nechaev A, Petrik LF (2019) Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. J Environ Chem Eng 7(3):103097

    Article  Google Scholar 

  • Amajor LC, Gbadebo AM (1992) Oil field brines of meteoric and connate origin in the eastern Niger delta. J Pet Geol 15(4):481–488

    Article  Google Scholar 

  • Askari Malekabad F, Jahanshahi R, Bagheri R (2020) Characterization of the Bazman geothermal field, the southeast of Iran. Geopersia 10(2):405–418

    Google Scholar 

  • Bahadori D, Jahanshahi R, Dehghani V, Mali S (2019) Variations of stable oxygen and hydrogen isotope ratios in the cold and thermal springs of the Bazman volcanic area (in the southeast of Iran). Environ Earth Sci 78:663

    Article  Google Scholar 

  • Cao X, Zhou S, Xie F, Rong R, Wu P (2019) The distribution of rare earth elements and sources in Maoshitou reservoir affected by acid mine drainage, southwest China. J Geochem Explor 202:92–99

    Article  Google Scholar 

  • Carrera J, Vázquez-Suñé E, Castillo O, Sánchez-Vila X (2004) A methodology to compute mixing ratios with uncertain end-members. Water Resour Res 40:W12101

    Article  Google Scholar 

  • Christensen JN, Dafflon B, Shiel AE, Tokunaga TK, Wan J, Faybishenko B, Dong W, Williams KH, Hobson C, Brown ST, Hubbard SS (2018) Using strontium isotopes to evaluate the spatial variation of groundwater recharge. Sci Total Environ 637–638:672–685

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental Isotopes in Hydrogeology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Dimitrijevic MD, Dimitrijevic MN, Djordjevic M, Vulovic D (1956) Geological map of Iran 1:100000 Series, Sheet 7149-Pariz. Ministry of Economy, Geological Survey of Iran

    Google Scholar 

  • Faye S, Maloszewski P, Stichler W, Gaye CB (2005) Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Sci Total Environ 343:243–259

    Article  Google Scholar 

  • Gamboa C, Godfrey L, Herrera C, Custodio E, Soler A (2019) The origin of solutes in groundwater in a hyper-arid environment: A chemical and multi-isotope approach in the Atacama Desert. Sci Total Environ, Chile. https://doi.org/10.1016/j.scitotenv.2019.06.356

    Book  Google Scholar 

  • Ghiglieri G, Carletti A, Pittalis D (2012) Analysis of salinization processes in the coastal carbonate aquifer of Porto Torres (NW Sardinia, Italy). J Hydrol 432–433:43–51

    Article  Google Scholar 

  • Gomo M (2018) Conceptual hydrogeochemical characteristics of a calcite and dolomite acid mine drainage neutralised circumneutral groundwater system. Water Sci 32(2):355–361

    Article  Google Scholar 

  • Gomo M, Vermeulen D (2014) Hydrogeochemical characteristics of a flooded underground coal mine groundwater system. J Afr Earth Sci 92:68–75

    Article  Google Scholar 

  • Gu H, Ma F, Guo J, Li K, Lu R (2018) Assessment of water sources and mixing of groundwater in a coastal mine: the Sanshandao gold mine, China. Mine Water Environ 37:351–365

    Article  Google Scholar 

  • Guan ZL, Jia ZF, Zhao ZQ, You QY (2019) Identification of inrush water recharge sources using hydrochemistry and stable isotopes: a case study of Mindong No. 1 coal mine in north-east Inner Mongolia. China. J Earth Syst Sci 128(200):2–12

    Google Scholar 

  • Guo BH, Cheng T, Wang L (2018) Physical simulation of water inrush through the mine floor from a confined aquifer. Mine Water Environ 37:577–585

    Article  Google Scholar 

  • Hao C, Huang Y, He P, Sun W (2019) Isotope drift characteristics in Ordovician limestone karst water caused by coal mining in northern China. Mine Water Environ 38:507–516

    Article  Google Scholar 

  • Heidari–Nejad H, Zarei M, MerkelBJ k, (2017) Evaluating the origin of seepage water in the Golgohar iron mine. Iran. Mine Water Environ 36:583–596

    Article  Google Scholar 

  • Hu XY, Wang LG, Lu YL, Yu M (2014) Analysis of insidious fault activation and water inrush from the mining floor. J Chin Univ Min Technol 24(4):477–483

    Google Scholar 

  • Hu Y, Li W, Wang Q, Liu S, Wang Z (2019a) Evolution of floor water inrush from a structural fractured zone with confined water. Mine Water Environ 38:252–260

    Article  Google Scholar 

  • Hu Y, Sun J, Liu W, Wei D (2019b) The evolution and prevention of water inrush due to fault activation at working face no. II 632 in the Hengyuan coal mine. Mine Water Environ 38:93–103

    Article  Google Scholar 

  • Huang PH, Yang ZY, Wang XY, Ding FF (2019) Research on Piper PCA-Bayes-LOOCV discrimination model of water inrush source in mines. Arab J Geosci 12:334

    Article  Google Scholar 

  • Huang X, Wang GC, Liang XY, Cui LF, Ma L, Xu QY (2018) Hydrochemical and stable isotope (δD and δ18O) characteristics of groundwater and hydrogeochemical processes in the Ningtiaota coalfield, northwest China. Mine Water Environ 37(1):119–136

    Article  Google Scholar 

  • Jahanshahi R, Zare M (2015) Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area. Iran Environ Earth Sci 74:505–520

    Article  Google Scholar 

  • Jahanshahi R, Zare M (2017) Delineating the origin of groundwater in the Golgohar mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environ 36(4):550–563

    Article  Google Scholar 

  • Jamal A, Dhar BB, Ratan S (1991) Acid mine drainage control in an opencast coal mine. Mine Water Environ 10(1):1–16

    Article  Google Scholar 

  • Jin Z, Zheng Q, Zhu C, Wang Y, Cen JR, Li FL (2018) Contribution of nitrate sources in surface water in multiple land use areas by combining isotopes and a Bayesian isotope mixing model. Appl Geochem 93:10–19

    Article  Google Scholar 

  • Jurado A, Vàzquez-Suñé E, Soler A, Tubau I, Carrera J, Pujades E, Anson I (2013) Application of multi-isotope data (O, D, C and S) to quantify redox processes in urban groundwater. Appl Geochem 34:114–125

    Article  Google Scholar 

  • Karolytė R, Johnson G, Serno S, Gilfillan SMV (2017) The influence of water-rock reactions and O isotope exchange with CO2 on water stable isotope composition of CO2 springs in SE Australia. Energy Procedia 114:3832–3839

    Article  Google Scholar 

  • Khorasanipour M, Eslami A (2014) Hydrogeochemistry and contamination of trace elements in Cu-porphyry mine tailings: a case study from the Sarcheshmeh Mine, SE Iran. Mine Water Environ 33:335–352

    Article  Google Scholar 

  • Larkins C, Turunen K, Mänttäri I, Lahaye Y, Hendriksson N, Forsman P, Backnäs S (2018) Characterization of selected conservative and non-conservative isotopes in mine effluent and impacted surface waters: implications for tracer applications at the mine-site scale. Appl Geochem 91:1–13

    Article  Google Scholar 

  • Lee D, Yim G-J, Ji S-W, Cheong Y-W (2013) Study on distribution characteristics of some water parameters properties of mine drainage in an oxidation pond, Hwangji-Yuchang coal mine, South Korea. Environ Earth Sci 68:241–249

    Article  Google Scholar 

  • Lenter CM, McDonald LM, Skousen JG, Ziemkiewicz PF (2002) The effects of sulfate on the physical and chemical properties of actively treated acid mine drainage floc. Mine Water Environ 21(3):114–120

    Article  Google Scholar 

  • Li B (2019) Wu Q (2019) Catastrophic evolution of water inrush from a water-rich fault in front of roadway development: a case study of the Hongcai coal mine. Mine Water Environ 38:421–430

    Article  Google Scholar 

  • Li P, Tian R, Liu R (2019) Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite mine, Guizhou Province. China Expo Health 11(2):81–94

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2016) Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River. China Environ Earth Sci 75(2):99

    Article  Google Scholar 

  • Li P, Wu J, Tian R, He S, He X, Xue C (2018) Zhang K (2018) Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi Coal Mine, northwest China. Mine Water Environ 37:222–237

    Article  Google Scholar 

  • Liu JT, Yj H, Gao ZJ, Wang M, Liu MX, Wang ZY, Wang S (2019) Determining the factors controlling the chemical composition of groundwater using multivariate statistics and geochemical methods in the Xiqu coal mine, north China. Environ Earth Sci 78:364

    Article  Google Scholar 

  • Ma L, Qian JZ, Zhao WD, Curtis Z, Zhang RG (2016) Hydrogeochemical analysis of multiple aquifers in a coal mine based on non-linear PCA and GIS. Environ Earth Sci 75(8):1–14

    Article  Google Scholar 

  • Ma R, Shi JS, Liu JC, Gui CL (2014) Combined use of multivariate statistical analysis and hydrochemical analysis for groundwater quality evolution: a case study in North China Plain. J Earth Sci 25(3):587–597

    Article  Google Scholar 

  • Mali S, Jafari H, Jahanshahi R (2021) Identifying the permeable zones in Dare-h-Zar copper mining area in Sirjan using time series analysis of the precipitation and groundwater level. Hydrogeology 5(2):127–141 ((in Persian))

    Google Scholar 

  • Mondal NC, Singh VS, Saxena VK, Singh VP (2011) Assessment of seawater impact using major hydrochemical ions: a case study from Sadras, Tamilnadu, India. Environ Monit Assess 177:315–335

    Article  Google Scholar 

  • Naderi M, Jahanshahi R, Dehbandi R (2020) Two distinct mechanisms of fluoride enrichment and associated health risk in springs’ water near an inactive volcano, southeast Iran. Ecotoxicol Environ Saf 195:110503

    Article  Google Scholar 

  • Parkhurst DL, Appelo C (1999) User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations Water-Resources. USGS Investigations Report 99–4259

  • Pitkänen P, Löfman J, Koskinen L, Leino-Forsman H, Snellman M (1999) Application of mass-balance and flow simulation calculations to interpretation of mixing at Äspö. Sweden Appl Geochem 14(7):893–905

    Article  Google Scholar 

  • Pyrbot W, Shabong L, Singh O (2019) Neutralization of acid mine drainage contaminated water and ecorestoration of stream in a coal mining area of east Jaintia Hills, Meghalaya. Mine Water Environ 38:551–555

    Article  Google Scholar 

  • Qian J, Tong Y, Ma L, Zhao W, Zhang R, He X (2018) Hydrochemical characteristics and groundwater source identification of a multiple aquifer system in a coal mine. Mine Water Environ 37:528–540

    Article  Google Scholar 

  • Qian JZ, Wang L, Ma L, Lu YH, Zhao WD, Zhang Y (2016) Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui. China Environ Earth Sci 75(9):3–10

    Article  Google Scholar 

  • Rambabu S, Venkatesh AS, Syed TH, Surinaidu L, Srinivas P, Rai SP, Manoj K (2018) Stable isotope systematics and geochemical signatures constraining groundwater hydraulics in the mining environment of the Korba coalfield, central India. Environ Earth Sci 77(15):2–17

    Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    Article  Google Scholar 

  • Sahraei Parizi H, Samani N (2014) Environmental isotope investigation of groundwater in the Sarcheshmeh copper mine area. Iran Mine Water Environ 33:97–109

    Article  Google Scholar 

  • Sahraei Parizi H, Samani N (2013) Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area (Iran) using multivariate statistical techniques. Environ Earth Sci 69:1699–1718

    Article  Google Scholar 

  • Scheiber L, Ayora C, Vázquez-Suñé E (2018) Quantification of proportions of different water sources in a mining operation. Sci Total Enviro 619–620:587–599

    Article  Google Scholar 

  • Shojaei Baghini S, Jahanshahi R, Mali S, Nasiri MA (2020) Destruction of groundwater quality and the risk of saltwater intrusion in the aquifers nearby Sirjan salt playa. Iran Int J Environ Anal Chem 100(6):647–661

    Article  Google Scholar 

  • Shrestha S, Kazama F (2007) Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji River basin. Japan Environ Model Softw 22(4):464–475

    Article  Google Scholar 

  • Skousen JG, Ziemkiewicz PF, McDonald LM (2019) Acid mine drainage formation, control and treatment: approaches and strategies. Extr Ind Soc 6(1):241–249

    Google Scholar 

  • Sprenger C, Parimala Renganayaki S, Schneider M, Elango L (2014) Hydrochemistry and stable isotopes during salinity ingress and refreshment in surface- and groundwater from the Arani-Koratallai (A–K) basin north of Chennai (India). Environ Earth Sci 73:7769–7780

    Article  Google Scholar 

  • Struzina M, Müller M, Drebenstedt C, Mansel H, Jolas P (2011) Dewatering of multi-aquifer unconsolidated rock opencast mines: alternative solutions with horizontal wells. Mine Water Environ 30:90–104

    Article  Google Scholar 

  • Tomiyama S, Igarashi T, Tabelin C, Tangviroon P, Ii H (2019) Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: a geochemical and isotopic study. J Contam Hydrol 225:103502

    Article  Google Scholar 

  • Tomonaga Y, Marzocchi R, Pera S, Pfeifer HR, Kipfer R, Decrouy L, Vennemann T (2016) Using noble–gas and stable–isotope data to determine groundwater origin and flow regimes: application to the Ceneri Base Tunnel (Switzerland). J Hydrol 545:395–409

    Article  Google Scholar 

  • Williams H, Turner FJ, Gilbert CM (1982) Petrography. An Introduction to the Study of Rocks in Thin Sections, Freeman and Company, New York City

    Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan. China Arab J Geosci 7(10):3973–3982

    Article  Google Scholar 

  • Wu Q, Liu Y, Wu X, Liu S, Sun W, Zeng Y (2016) Assessment of groundwater inrush from underlying aquifers in Tunbai coal mine, Shanxi province. China Environ Earth Sci 75:737

    Article  Google Scholar 

  • Wunderlin DA, Diaz MP, Ame MV, Pesce SF, Hued AC, Bistoni MA (2001) Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: suquia River basin (Cordoba, Argentina). Water Res 35(12):2881–2894

    Article  Google Scholar 

  • Xu Z, Sun Y, Gao S, Zhao X, Duan R, Yao M, Liu Q (2018) Groundwater source discrimination and proportion determination of mine inflow using ion analyses: a case study from the Longmen coal mine, Henan Province, China. Mine Water Environ 37:385–392

    Article  Google Scholar 

  • Yang J, Dong S, Wang H, Li G, Wang T, Wang Q (2021) Mine water source discrimination based on hydrogeochemical characteristics in the northern Ordos Basin, China. Mine Water Environ 40:433–441

    Article  Google Scholar 

  • Yang Z, Huang P, Ding F (2020) Groundwater hydrogeochemical mechanisms and the connectivity of multilayer aquifers in a coal mining region. Mine Water Environ 39:808–822

    Article  Google Scholar 

  • Yidana SM, Yidana A (2010) An assessment of the origin and variation of groundwater salinity in southeastern Ghana. Environ Earth Sci 61:1259–1273

    Article  Google Scholar 

  • Yolcubal I, Demiray AD, Çiftçi E (2017) Assessment of acid mine drainage potential of flotation slurry from a tailing dam in a copper mine, Murgul, northeastern Turkey. Environ Earth Sci 76:100

    Article  Google Scholar 

  • Zhang H, Xu G, Chen X, Mabaire A, Zhou J, Zhang Y, Zhang G, Zhu L (2020) Groundwater hydrogeochemical processes and the connectivity of multilayer aquifers in a coal mine with karst collapse columns. Mine Water Environ 39:356–368

    Article  Google Scholar 

  • Zhang H (2020) Yao D (2020) The Bayes recognition model for mine water inrush source based on multiple logistic regression analysis. Mine Water Environ 39:888–901

    Article  Google Scholar 

  • Zhao J, Fu G, Lei K, Li YW (2011) Multivariate analysis of surface water quality in the three gorges area of China and implications for water management. J Environ Sci 23(9):1460–1471

    Article  Google Scholar 

  • Zhao Y, Li PF, Tian SM (2013) Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China. J Rock Mech Geotech Eng 5(6):468–477

    Article  Google Scholar 

  • Zhou J, Zhang Q, Kang F, Zhang Y, Yuan L, Wei D, Lin S (2018a) Using multi-isotopes (34S, 18O, 2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province. Int Biodeterior Biodegr 128:48–55

    Article  Google Scholar 

  • Zhou QL, Juan H, Arturo H (2018b) The numerical analysis of fault-induced mine water inrush using the extended finite element method and fracture mechanics. Mine Water Environ 37:185–195

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Iranian Copper Industry Co. and Dr. H. Sahraei Parizi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Jafari.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mali, S., Jafari, H., Jahanshahi, R. et al. Groundwater Source Identification and Flow Model of the Dareh-Zar Copper Mine in Central Iran by Chemo-isotopic Techniques. Mine Water Environ 41, 921–937 (2022). https://doi.org/10.1007/s10230-022-00909-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00909-z

Keywords

Navigation