Skip to main content
Log in

Cross-Layer Leaching of Coal Fly Ash and Mine Tailings to Control Acid Generation from Mine Wastes

Der Einfluss unterschiedlicher Einbauweisen von Flugasche auf die Säurebildung in Bergbauabfällen

Lixiviación cruzada de cenizas de carbón y relaves de minas para controlar la generación de ácido a partir de desechos de minas

粉煤灰和尾矿穿层淋滤控制矸石固废产酸

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Coal fly ash can be used in in various configurations (e.g. as cap, bottom liner, or blending) at a mine site, but comparative studies investigating their capacity to control acid mine drainage are limited. Batch and column leaching experiments were conducted to investigate the effects of fly ash-mine tailings mix ratios and system configurations on leachate chemistry. Acidic mine tailings (pH 2.72) were obtained from waste piles at a former gold and pyrite mine. Mixing the fly ash with the tailings in a 1:1 (w/w) ratio decreased Zn, Ni, Fe, Mn, Pb, and Cu leaching by 90 ± 6%, increased the pH from extremely acidic (2.9) to alkaline (8.0), and decreased electrical conductivity from 4 to 2.5 mS cm−1 due to solute precipitation. Using the fly ash as a ‘chemical liner’ beneath the tailings, applying the fly ash as both a cap and bottom liner, or blending the fly ash with tailings produced significantly less acidity, salinity, and metal leaching than using the fly ash as a cap. The capacity of fly ash to control acid generation is attributed to its acid neutralizing capacity and high pH (11.1).

Zusammenfassung

Kohle-Flugasche kann auf verschiedene Weise, z. B. als Oberflächen- und/oder Basislage bzw. in verschiedenen Mischungsverhältnissen an Bergbaustandorten verwendet werden. Studien, welche den Einfluss der Einbauarten auf die Bildung saurer Grubenabwässern untersuchen, sind jedoch selten. Um die Auswirkungen unterschiedlicher Flugasche-Bergbauabfall-Gemische und Einbauarten auf die Laugungschemie zu untersuchen, werden Batch- und Säulenexperimente durchgeführt. Die untersuchten sauren Bergbauabfälle (pH-Wert 2.72) stammen aus Abraumhalden einer ehemaligen Gold- und Pyritmine. Ein Mischungsverhältnis von Flugasche mit Bergbaurückständen von 1:1 (Gew./Gew.) verringert die Zn-, Ni-, Fe-, Mn-, Pb- und Cu-Auswaschung um 90 ± 6%. Gleichzeitig wird der pH-Wert von extrem sauer (2.9) auf alkalisch (8.0) erhöht und die elektrische Leitfähigkeit von 4 auf 2,5 mS/cm, aufgrund der Ausfällung gelöster Stoffe, verringert. Der lagenweise Einbau von Flugasche („chemical liner“) unterhalb der Rückstände, das gleichzeitige Einbringen von Flugasche als Oberflächen- und Basislage oder die Mischung von Flugasche mit Bergbaurückständen führt zu einer wesentlich geringeren Säurebildung sowie geringeren Salz- und Metallauswaschungen als eine singuläre Verwendung der Flugasche als Oberflächenlage. Die Fähigkeit von Flugasche, die Säurebildung zu kontrollieren bzw. zu beeinflussen, wird auf ihre Säureneutralisationskapazität und ihren hohen pH-Wert (11.1) zurückgeführt.

Resumen

Las cenizas de carbón se pueden usar en varias configuraciones (por ejemplo, como cobertura, barrera inferior o mezcla) en un sitio de la mina aunque los estudios comparativos que investigan su capacidad para controlar el drenaje ácido de la mina son limitados. Se llevaron a cabo experimentos de lixiviación en lotes y columnas para investigar los efectos de las proporciones de mezcla de relaves de las cenizas de las cenizas volantes y las configuraciones del sistema en la química de los lixiviados. Los relaves de las minas ácidas (pH: 2,72) se obtuvieron de pilas de desechos en una antigua mina de oro y pirita. La mezcla de las cenizas volantes con los relaves en una proporción 1:1 (p/p) disminuyó la lixiviación de Zn, Ni, Fe, Mn, Pb y Cu en un 90 ± 6%, incrementó el pH de extremadamente ácido (2,9) a alcalino (8,0) y una conductividad eléctrica reducida de 4 a 2,5 mS/cm debido a la precipitación de solutos. Usando la ceniza volante como una “barrera química” debajo de los relaves, aplicando la ceniza tanto como cobertura como barrera inferior o mezclando las cenizas con los relaves produce significativamente menos acidez, salinidad y lixiviación metálica que el uso de la ceniza como cobertura exclusivamente. La capacidad de las cenizas para controlar la generación de ácido se atribuye a su capacidad neutralizadora de ácidos y su alto pH (11,1).

摘要

粉煤灰在采场有多种用途(例如,做盖层、底衬或混合物),但有关粉煤灰控制酸性废水产出能力的比较研究并不多。通过批次和柱淋滤试验,研究了粉煤灰与尾矿混合比及其淋滤液的化学特性。酸性尾矿(pH: 2.72)取自从前金矿和黄铁矿的矸石堆。粉煤灰与尾矿按1:1(w/w)混合,它们可以减小90 ± 6%的锌、镍、铁、锰、铅和铜滤出,将pH从酸性2.9到碱性8.0,使电导率因沉淀反应而从4 降到 2.5 mS/cm。相对于粉煤灰作尾矿盖层,粉煤灰在尾矿底作 “化学衬垫”、粉煤灰同时铺设于尾矿盖层和底衬、粉煤灰与尾矿混合的方式都可以大幅降低尾矿酸性、盐度和金属滤出。粉煤灰控制产酸的能力源于它酸中和能力和较高的pH值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • ASTM (American Society for Testing and Materials) (2005) ASTM C, 618. Standard specification for coal fly ash and raw calcined natural pozzolan for use in concrete. Am Soc Test Mater, West Conshohocken

    Google Scholar 

  • Benatti CT, Tavares CRG (2012) Fenton’s process for the treatment of mixed waste chemicals. Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTech. http://cdn.intechopen.com/pdfs/29376.pdf. Accessed 12 Jan 2019

  • Dutta BK, Khanra S, Mallick D (2009) Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel 88(7):1314–1323

    Article  Google Scholar 

  • Dzingayi E (2006) Bindura Nickel Corporation smelter operations. J South Afr Inst Min Metall 106(3):171–178

    Google Scholar 

  • EC (European Community) (2003) EC Council Decision 2003/33/EC of 19 December 2002. Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 and Annex II to Directive 1999/31/EC. European Community, Brussels

    Google Scholar 

  • Finkelman RB, Giffin DE (1986) Hydrogen peroxide oxidation: an improved method for rapidly assessing acid-generating potential of sediments and sedimentary rocks. Reclam Reveg Res 5:521–543

    Google Scholar 

  • Flint AL, Flint LE (2002) Particle density. In: Dane H, Topp GC (eds) Methods of soil analysis, part 4: physical methods. American Society of Agronomy, Soil Science Society of America, Madison, WI, pp 229–240

    Google Scholar 

  • Frouz J, Zadinová R, Mihaljevič M, Rojík P, Řehoř M (2014) Effect of accelerated weathering and leaching on the chemistry and phytotoxicity of coal-mine overburden. Eur J Environ Sci 4(2):106–111

    Google Scholar 

  • Galvín AP, Ayuso J, Agrela F, Barbudo A, Jiménez JR (2013) Analysis of leaching procedures for environmental risk assessment of recycled aggregate use in unpaved roads. Constr Build Mater 40:1207–1214

    Article  Google Scholar 

  • Garrabrants AC, Kosson DS, Stefanski L, DeLapp R, Seignette PFAB, van der Sloot HA, Kariher P, Baldwin M (2012) Interlaboratory validation of the leaching environmental assessment framework (LEAF) method 1313 and method 1316. US EPA/600/R-12/623, Washington DC

  • Gitari MW (2006) Evaluation of the leachable chemistry and contaminants attenuation in acid mine drainage by fly ash and its derivatives. PhD Thesis. Dept of Chemistry, University of Western Cape, South Africa

  • Gitari MW, Petrik LF, Etchebers O, Key DL, Iwuoha E, Okujeni C (2006) Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements. J Environ Sci Health A 41:1729–1747

    Article  Google Scholar 

  • Gwenzi W, Mupatsi N (2016) Evaluation of heavy metal leaching from coal fly ash-versus conventional concrete monoliths and debris. Waste Manag 49:114–123

    Article  Google Scholar 

  • Gwenzi W, Mashaike C, Chaukura N, Bunhu T (2017) Removal of trace metals from acid mine drainage using a sequential combination of coal fly ash—based adsorbents and phytoremediation by Bunchgrass (Vertiver [Vetivera Zizaniodes L.]). Mine Water Environ 36:520–531

    Article  Google Scholar 

  • Gwenzi W, Kosta GT, Chaukura N (2018) Potential leaching of heavy metals from pristine and accelerated weathered slag from recycling of automobile lead-acid batteries. Environ Process 5:611–629

    Article  Google Scholar 

  • Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater 127(1–3):89–101. https://doi.org/10.1016/j.jhazmat.2005.06.027

    Article  Google Scholar 

  • Jones KB, Ruppert LF, Swanson SM (2012) Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. Int J Coal Geol 94:337–348

    Article  Google Scholar 

  • Kadirvelu K, Goel J, Rajagopal C (2008) Sorption of lead, mercury and cadmium ions in multi-component system using carbon aerogels as adsorbent. JHazard Mater 153(1–2):502–507

    Article  Google Scholar 

  • Lee G, Bigham JM, Faure G (2002) Removal of trace metals by coprecipitation with Fe, Al and Mn from natural waters contaminated with acid mine drainage in the Ducktown Mining District, Tennessee. Appl Geochem 17(5):569–581

    Article  Google Scholar 

  • Lin CY, Yang DH (2002) Removal of pollutants from wastewater by coal bottom ash. J Environ Sci Health A 37(8):1509–1522

    Article  Google Scholar 

  • Lo HM, Liao YL (2007) The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites. J Hazard Mater 142(1):512–519

    Article  Google Scholar 

  • Ma Y, Si C, Lin C (2014) Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth. Environ Technol 35(18):2314–2321. https://doi.org/10.1080/09593330.2014.902113

    Article  Google Scholar 

  • Makomo Resources (2019) Thermal power products: Makomo coal thermal power Station Products Spreadsheet 2018. Makomo Resources (Pvt) Ltd. https://makomoresources.com/coal-products/. Accessed 12 Jan 2019

  • Mapanda F, Nyamadzawo G, Nyamangara J, Wuta M (2007) Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water. Phys Chem Earth 32:1366–1375

    Article  Google Scholar 

  • Mohan D, Chander S (2006) Removal and recovery of metal ions from acid mine drainage using lignite—a low cost sorbent. J Hazard Mater 137(3):1545–1553

    Article  Google Scholar 

  • Mohan S, Gandhimathi R (2009) Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater 169:351–359

    Article  Google Scholar 

  • Morar DL, Aydilek AH, Seagren EA, Demirkan MM (2011) Leaching of metals from fly ash–amended permeable reactive barriers. J Environ Eng 138(8):815–825

    Article  Google Scholar 

  • OECD/OCDE (Organisation for Economic Cooperation and Development) (2004) Guidelines for the testing of chemicals. Leaching in soil columns, OECD/OCDE 312. OECD/OCDE, Paris

    Google Scholar 

  • Oesterlen PM, Lepper J (2005) The Lower Karoo coal (k2–3) of the Mid-Zambezi basin, Zimbabwe: depositional analysis, coal genesis and palaeogeographic implications. Int J Coal Geol 61:97–118

    Article  Google Scholar 

  • Orakwue EO, Asokbunyarat V, Rene ER, Lens PN, Annachhatre A (2016) Adsorption of Iron (II) from acid mine drainage contaminated groundwater using coal fly ash, coal bottom ash, and bentonite clay. Water Air Soil Pollut 227(3):74. https://doi.org/10.1007/s11270-016-2772-8

    Article  Google Scholar 

  • Praharaj T, Powell MA, Hart BR, Tripathy S (2002) Leachability of elements from sub-bituminous coal fly ash from India. Environ Int 27(8):609–615

    Article  Google Scholar 

  • Prasad B, Kumar H (2015) Treatment of acid mine drainage using a fly ash zeolite column. Mine Water Environ 35(4):553–557. https://doi.org/10.1007/s10230-015-0373-1

    Article  Google Scholar 

  • Prasad B, Mortimer R (2011) Treatment of acid mine drainage using fly ash zeolite. Water Air Soil Pollut 218:667–679

    Article  Google Scholar 

  • Quina MJ, Bordado JCM, Quinta-Ferreira RM (2009) The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Manag 29:2483–2493

    Article  Google Scholar 

  • Quispe D, Pérez-López R, Acero P, Ayora C, Nieto JM, Tucoulou R (2013) Formation of a hardpan in the co-disposal of fly ash and sulfide mine tailings and its influence on the generation of acid mine drainage. Chem Geol 355:45–55. https://doi.org/10.1016/j.chemgeo.2013.07.005

    Article  Google Scholar 

  • Ravengai S, Owen R, Love D (2004) Evaluation of seepage and acid generation potential from evaporation ponds, Iron Duke Pyrite Mine, Mazowe Valley, Zimbabwe. Phys Chem Earth 29:1129–1134

    Article  Google Scholar 

  • Ravengai S, Love D, Love I, Gratwicke B, Mandingaisa O, Owen RJS (2005) Impact of Iron Duke Pyrite Mine on water chemistry and aquatic life—Mazowe Valley, Zimbabwe. Water SA 32:1–4

    Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Australian Soil and Land Survey Handbook. Inkata Press, Melbourne

    Google Scholar 

  • Ruhl L, Vengosh A, Dwyer GS, Hsu-Kim H, Deonarine A (2010) Environmental impacts of the coal ash spill in Kingston, Tennessee: an 18-Month survey. Environ Sci Technol 44:9272–9278

    Article  Google Scholar 

  • Sahoo PK, Tripathy MK, Panigrahi SK, Equeenuddin MD (2012) Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Appl Water Sci 3:567–576

    Article  Google Scholar 

  • Santini T, Hinz C, Rate AW, Carter CM, Gilkes RJ (2011) In-situ neutralization of uncarbonated bauxite residue mud by cross layer leaching with carbonated bauxite residue mud. J Hazard Mater 194:119–127. https://doi.org/10.1016/j.jhazmat.2011.07.090

    Article  Google Scholar 

  • Shackelford CD (1991) Laboratory diffusion testing for waste disposal: a review. J Contam Hydrol 7:177–217

    Article  Google Scholar 

  • Silva LFO, Querol X, da Boit KM, de Vallejuelo SF-O, Madariaga JM (2011) Brazilian coal mining residues and sulphide oxidation by Fenton’s reaction: an accelerated weathering procedure to evaluate possible environmental impact. J Hazard Mater 186:516–525

    Article  Google Scholar 

  • Spliethoff H (2010) Steam power stations for electricity and heat generation. In: Power generation from solid fuels. Power systems. Springer, Berlin, Heidelberg, pp 73–219. https://doi.org/10.1007/978-3-642-02856-4_4

    Chapter  Google Scholar 

  • SPSS Inc. (2007) SPSS for Windows, Version 16.0. Released 2007. SPSS Inc, Chicago

    Google Scholar 

  • Ugurlu A (2004) Leaching characteristics of fly ash. Environ Geol 46:890–895

    Article  Google Scholar 

  • U.S. EPA (United States of America Environmental Protection Agency) (1995) A guide to the biosolids risk assessment for the EPA Part 503 Rule EPA/B32-B-93-005.U.S. EPA. Office of Wastewater Management, Washington DC

    Google Scholar 

  • U.S. EPA (United States of America Environmental Protection Agency) (2014) Method 1313 liquid-solid partitioning as function of extract pH using a parallel batch extraction procedure SW-846 Update V. U.S. EPA, Washington DC

    Google Scholar 

  • Vercoutere KU, Fortunati H, Muntau BG, Maizer EA (1995) The certified reference material CRM 142R light sandy soil, CRM 143R sewage sludge amended soil and CRM, 145R sewage sludge for quality control in monitoring environmental and soil pollution. Fresenius J Anal Chem 352(1–2):197–202

    Article  Google Scholar 

  • Wang S, Wu H (2006) Environmental-benign utilisation of fly ash as low-cost adsorbents. J Hazard Mater 136(3):482–501

    Article  Google Scholar 

  • Williams TM, Smith B (2000) Hydrochemical characterization of acute acid mine drainage at Iron Duke Mine, Mazowe, Zimbabwe. Environ Geol 39:272–278

    Article  Google Scholar 

  • Yan Z, Jianquo J, Moazhe C (2008) MINTEQ modelling for evaluating the leaching behaviour of heavy metals in MSWI fly ash. J Environ Sci 20:1398–1402

    Article  Google Scholar 

  • Ye N, Chen Y, Yang J, Liang S, Hu Y, Xiao B, Huang Q, Shi Y, Hu J, Wu X (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78. https://doi.org/10.1016/j.jhazmat.2016.06.042

    Article  Google Scholar 

  • Yeheyis MB, Shang JQ, Yanful EK (2009) Long-term evaluation of coal fly ash and mine tailings co-placement: a site specific study. J Environ Manag 91:237–244. https://doi.org/10.1016/j.jenvman.2009.08.010

    Article  Google Scholar 

  • You G-S, Ahn J-W, Han G-C, Cho H-C (2006) Neutralizing capacity of bottom ash from municipal solid waste incineration of different particle size. Korean J Chem Eng 23(2):237–240

    Article  Google Scholar 

  • Zhang M (2011) Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chem Eng J 172:361–368

    Article  Google Scholar 

  • Zhang H, He PJ, Shao LM, Li X (2008) Leaching behaviour of heavy metals form municipal solid waste incineration bottom ash and its geochemical modelling. J Mater Cycles Waste 10:7–13

    Article  Google Scholar 

  • ZPC (Zimbabwe Power Company) (2019) Harare power station. Zimbabwe Power Co. www.zpc.co.zw/powerstations/3/harare-power-station. Accessed 12 Jan 2019

Download references

Acknowledgements

We are grateful to the technical staff from the Department of Soil Science and Agricultural Engineering for laboratory support. We also thank the three anonymous reviewers and the editor whose comments greatly improved the quality and presentation of the manuscript. This research was solely funded by the authors and received no additional external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willis Gwenzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mungazi, A.A., Gwenzi, W. Cross-Layer Leaching of Coal Fly Ash and Mine Tailings to Control Acid Generation from Mine Wastes. Mine Water Environ 38, 602–616 (2019). https://doi.org/10.1007/s10230-019-00618-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-019-00618-0

Keywords

Navigation