Skip to main content
Log in

Metrics, Quantization and Registration in Varifold Spaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper is concerned with the theory and applications of varifolds to the representation, approximation and diffeomorphic registration of shapes. One of its purpose is to synthesize and extend several prior works which, so far, have made use of this framework mainly in the context of submanifold comparison and matching. In this work, we instead consider deformation models acting on general varifold spaces, which allow to formulate and tackle diffeomorphic registration problems for a much wider class of geometric objects and lead to a more versatile algorithmic pipeline. We study in detail the construction of kernel metrics on varifold spaces and the resulting topological properties of those metrics and then propose a mathematical model for diffeomorphic registration of varifolds under a specific group action which we formulate in the framework of optimal control theory. A second important part of the paper focuses on the discrete aspects. Specifically, we address the problem of optimal finite approximations (quantization) for those metrics and show a \(\varGamma \)-convergence property for the corresponding registration functionals. Finally, we develop numerical pipelines for quantization and registration before showing a few preliminary results for one- and two-dimensional varifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allard, W.K.: On the first variation of a varifold. Annals of mathematics pp. 417–491 (1972)

  2. Allard, W.K., Chen, G., Maggioni, M.: Multi-scale geometric methods for data sets ii: Geometric multi-resolution analysis. Applied and Computational Harmonic Analysis 32(3), 435–462 (2012)

    Article  MathSciNet  Google Scholar 

  3. Almgren, F.J.: Plateau’s problem: an invitation to varifold geometry, vol. 13. American Mathematical Soc. (1966)

  4. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford : Clarendon Press (2000)

    MATH  Google Scholar 

  5. Ardekani, S., Jain, A., Jain, S., Abraham, T.P., Abraham, M.R., Zimmerman, S., Winslow, R.L., Miller, M.I., Younes, L.: Matching Sparse Sets of Cardiac Image Cross-Sections Using Large Deformation Diffeomorphic Metric Mapping Algorithm. Statistical Atlases and Computational Models of the Heart (2011)

  6. Arguillère, S., Miller, M., Younes, L.: Diffeomorphic Surface Registration with Atrophy Constraints. SIAM Journal on Imaging Sciences 9(3), 975–1003 (2016)

    Article  MathSciNet  Google Scholar 

  7. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Shape deformation analysis from the optimal control viewpoint. Journal de Mathématiques Pures et Appliquées 104(1), 139–178 (2015)

    Article  MathSciNet  Google Scholar 

  8. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  9. Bauer, M., Bruveris, M., Charon, N., Møller-Andersen, J.: A relaxed approach for curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of Variations 25, 72 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision 61(139-157) (2005)

  11. Bogachev, V.I.: Measure theory, vol. 2. Springer Science & Business Media (2007)

  12. Bruveris, M., Risser, L., Vialard, F.X.: Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups. Multiscale Modeling and Simulation 10(4), 1344–1368 (2012)

    Article  MathSciNet  Google Scholar 

  13. Buet, B., Leonardi, G.P., Masnou, S.: Discretization and approximation of surfaces using varifolds. Geometric Flows 3(1), 28–56 (2018)

    Article  MathSciNet  Google Scholar 

  14. Carmeli, C., De Vito, E., Toigo, A., Umanita, V.: Vector valued reproducing kernel Hilbert spaces and universality. Analysis and Applications 8(01), 19–61 (2010)

    Article  MathSciNet  Google Scholar 

  15. Charlier, B., Charon, N., Trouvé, A.: The Fshape Framework for the Variability Analysis of Functional Shapes. Foundations of Computational Mathematics 17(2), 287–357 (2017)

    Article  MathSciNet  Google Scholar 

  16. Charlier, B., Feydy, J., Glaunès, J.: Keops (software). https://www.kernel-operations.io/ (2018)

  17. Charon, N., Charlier, B., Glaunès, J., Gori, P., Roussillon, P.: Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles. In: Riemannian Geometric Statistics in Medical Image Analysis, pp. 441–477 (2020)

  18. Charon, N., Trouvé, A.: The varifold representation of non-oriented shapes for diffeomorphic registration. SIAM journal of Imaging Sciences 6(4), 2547–2580 (2013)

    Article  Google Scholar 

  19. Chauffert, N., Ciuciu, P., Kahn, J., Weiss, P.: A projection method on measures sets. Constructive Approximation 45(1), 83–111 (2017)

    Article  MathSciNet  Google Scholar 

  20. Chizat, L., Peyré, G., Schmitzer, B., Vialard, F.X.: An Interpolating Distance Between Optimal Transport and Fisher-Rao Metrics. Foundations of Computational Mathematics 18(1), 1–44 (2018)

    Article  MathSciNet  Google Scholar 

  21. Cohen-Steiner, D., Morvan, J.: Restricted Delaunay triangulation and normal cycle. Comput. Geom pp. 312–321 (2003)

  22. Durrleman, S., Fillard, P., Pennec, X., Trouvé, A., Ayache, N.: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55(3), 1073–1090 (2010)

    Article  Google Scholar 

  23. Durrleman, S., Pennec, X., Trouvé, A., Ayache, N.: Statistical models of sets of curves and surfaces based on currents. Medical image analysis 13(5), 793–808 (2009)

    Article  Google Scholar 

  24. Evans, L.: Measure theory and fine properties of functions. Routledge (2018)

  25. Federer, H.: Geometric measure theory. Springer (1969)

  26. Feydy, J., Charlier, B., Vialard, F.X., Peyré, G.: Optimal Transport for Diffeomorphic Registration. In: Medical Image Computing and Computer Assisted Intervention, pp. 291–299 (2017)

  27. Glaunès, J., Qiu, A., Miller, M., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int J Comput Vis 80(3), 317–336 (2008)

    Article  Google Scholar 

  28. Glaunès, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. Computer Vision and Pattern Recognition (CVPR) 2, 712–718 (2004)

    Google Scholar 

  29. Glaunès, J., Vaillant, M.: Surface matching via currents. Proceedings of Information Processing in Medical Imaging (IPMI), Lecture Notes in Computer Science 3565(381-392) (2006)

  30. Gori, P., Colliot, O., Marrakchi-Kacem, L., Worbe, Y., Fallani, F.D.V., Chavez, M., Poupon, C., Hartmann, A., Ayache, N., Durrleman, S.: Parsimonious Approximation of Streamline Trajectories in White Matter Fiber Bundles. IEEE Transactions on Medical Imaging PP(99) (2016)

  31. Graf, S., Luschgy, H.: Foundations of quantization for probability distributions. Springer (2007)

  32. Grenander, U.: General pattern theory: A mathematical study of regular structures. Clarendon Press Oxford (1993)

    MATH  Google Scholar 

  33. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer (2001)

  34. Hsieh, H.W., Charon, N.: Diffeomorphic registration of discrete geometric distributions. Mathematics Of Shapes And Applications 37, 45 (2019)

    Article  Google Scholar 

  35. Hu, Y., Hudelson, M., Krishnamoorthy, B., Tumurbaatar, A., Vixie, K.R.: Median Shapes. preprint (2018)

  36. Jacobs, H.: Symmetries in LDDMM with higher-order momentum distributions. Mathematical Foundations of Computational Anatomy (MFCA) Proceedings pp. 20–31 (2013)

  37. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds. Computer Vision and Pattern Recognition (CVPR) (2017)

  38. Kloeckner, B.: Approximation by finitely supported measures. ESAIM: Control, Optimisation and Calculus of Variations 18(2), 343–359 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Micheli, M., Glaunès, J.: Matrix-valued kernels for shape deformation analysis. Geometry, Imaging and Computing 1(1), 57–139 (2014)

    Article  MathSciNet  Google Scholar 

  40. Miller, M., Qiu, A.: The emerging discipline of computational functional anatomy. NeuroImage 45, 16–39 (2009)

    Article  Google Scholar 

  41. Miller, M., Ratnanather, J.T., Tward, D.J., Brown, T., Lee, D., Ketcha, M., Mori, K., Wang, M.C., Mori, S., Albert, M., Younes, L.,  , B.R.T.: Network Neurodegeneration in Alzheimer’s Disease via MRI Based Shape Diffeomorphometry and High-Field Atlasing. Frontiers in Bioengineering and Biotechnology 3, 54 (2015)

  42. Miller, M., Trouvé, A., Younes, L.: Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D’Arcy Thompson. Annu Rev Biomed Eng 7(17), 447–509 (2015)

    Article  Google Scholar 

  43. Overton, M.: HANSO: hybrid algorithm for non-smooth optimization 2.2 (2016). https://cs.nyu.edu/overton/software/hanso/

  44. Piccoli, B., Rossi, F.: Generalized Wasserstein Distance and its Application to Transport Equations with Source. Archive for Rational Mechanics and Analysis 211(1), 335–358 (2014)

    Article  MathSciNet  Google Scholar 

  45. Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Processes. John Wiley & Sons (1962)

  46. Roussillon, P., Glaunès, J.: Kernel Metrics on Normal Cycles and Application to Curve Matching. SIAM Journal on Imaging Sciences 9(4), 1991–2038 (2016)

    Article  MathSciNet  Google Scholar 

  47. Roussillon, P., Glaunès, J.: Surface Matching Using Normal Cycles. Geometric Science of Information pp. 73–80 (2017)

  48. Simon, L.: Lecture notes on geometric measure theory. Australian national university (1983)

  49. Sommer, S., Nielsen, M., Darkner, S., Pennec, X.: Higher-Order Momentum Distributions and Locally Affine LDDMM Registration. SIAM Journal on Imaging Sciences 6(1), 341–367 (2013)

    Article  MathSciNet  Google Scholar 

  50. Sriperumbudur, B.K., Fukumizu, K., Lanckriet, G.R.: Universality, characteristic kernels and RKHS embedding of measures. Journal of Machine Learning Research 12, 2389–2410 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.: Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation. International Journal of Computer Vision 97(2), 229–241 (2012)

    Article  MathSciNet  Google Scholar 

  52. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media (2008)

  53. Younes, L.: Shapes and diffeomorphisms. Springer (2019)

  54. Young, L.C.: Generalized surfaces in the calculus of variations. Annals of mathematics 43(1), 84–103 (1942)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Benjamin Charlier, Siamak Ardekani, Laurent Younes and the BIOCARD team for sharing the data used in some of the examples of this paper. Both authors acknowledge the support of the NSF through the Grant DMS-1819131.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Charon.

Additional information

Communicated by Shmuel Weinberger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 3

We first prove that \({\mathcal {H}}^d(X\bigtriangleup Y) =0\). Let us denote by \(W^{pos}\) and \(W^G\) the RKHS associated with kernels \(k^{pos}\) and \(k^{G}\), respectively. Suppose that X and Y are rectifiable sets as above such that \(\left\| \mu _X-\mu _Y \right\| _{W^*}=0\) and \({\mathcal {H}}^d(X\bigtriangleup Y) >0\). Without loss of generality, we may assume that \({\mathcal {H}}^d(X \setminus Y) >0\). From Lusin’s theorem, there exists a subset U of X such that \(T|_{U}\) is continuous and \({\mathcal {H}}^d(X\setminus U) < {\mathcal {H}}^d(X\setminus Y)\). Let us denote by \(E := U \cap (X \setminus Y)\), we see that \({\mathcal {H}}^d(E)>0\). Since for \({\mathcal {H}}^d \ a.e. \ x\in E\),

$$\begin{aligned} \limsup \limits _{r \rightarrow 0} \frac{{\mathcal {H}}^d(B_r(x)\cap E )}{\frac{\pi ^{\frac{d}{2}}}{\varGamma (\frac{d}{2}+1)}r^d} \ge \frac{1}{2^d}, \end{aligned}$$

(cf [24]), there exists \(x_0 \in E, \ {\mathcal {H}}^d(B_r(x_0) \cap E)>0\) for any \(r >0\).

Let \(g:{\widetilde{G}}^n_d \rightarrow {\mathbb {R}}\) be defined by \(g(\cdot ) = k^G(T(x_0),\cdot )\). Since \(x \longmapsto g(T(x))\) is continuous on E and \(g(T(x_0))>0\), there exists \(r_0>0\) such that \(\forall \ x \in B_{r_0}(x_0) \cap E, \ g(T(x))>0\). Let \(A \doteq B_{r_0}(x_0) \cap E\) and \(h(x) := {\mathbf {1}}_A(x)\), then \({\mathcal {H}}^d(A)>0\) and \(g(T(x))>0, \ \forall \ x \in A\). Using the density of \(C_c({\mathbb {R}}^n)\) in together with the fact that \(k^{pos}\) is \(C_0\)-universal, there exist \(\{f_j\}_{j=1}^{\infty } \subset C_c({\mathbb {R}}^n)\) and \(\{h_j\}_{j=1}^{\infty } \subset W^{pos}\) such that \(\lim \limits _{j \rightarrow \infty } f_j =h\) in and \(\Vert f_j-h_j \Vert _{\infty }< \frac{1}{j}\). Now, since \(h_j \otimes g \in W\) and \(\mu _X = \mu _Y\) in \(W^*\), we have

$$\begin{aligned} 0= & {} (\mu _X-\mu _Y)(h_j \otimes g) = \int _{X} h_j(x) g(T(x)) d {\mathcal {H}}^d(x) \\&- \int _{Y} h_j(y) g(S(y)) \text {d} {\mathcal {H}}^d(y) \rightarrow \int _A g(T(x)) \text {d} {\mathcal {H}}^d(x) >0, \end{aligned}$$

which is a contradiction. Hence, we have \({\mathcal {H}}^d(X\bigtriangleup Y) = 0\)

Next, we show that \(T(x) = S(x)\) \({\mathcal {H}}^d\)-a.e.. Let \(F := \{x \in X | T(x) = -S(x)\}\) and assume that \({\mathcal {H}}^d(F)>0\). From Lusin’s theorem, there exists subset \(F' \subset F\) such that \(T|_{F'}\) is continuous and \({\mathcal {H}}^d(F')>0\). Using the upper density argument as above, we can find \(z_0 \in F'\) such that \({\mathcal {H}}^d(B_r(z_0) \cap F')>0\) for all \(r>0\). Since the map \(x \mapsto \langle T(x),T(z_0) \rangle \) restricted to \(F'\) is continuous, there exists a \(\delta _0>0\) satisfying:

$$\begin{aligned} \langle T(x),T(z_0) \rangle >0, \ \forall x \in B_{\delta _0}(z_0) \cap F'. \end{aligned}$$

Define \(B:= B_{\delta _0}(z_0) \cap F'\), \(\eta (\cdot ):= \gamma (\langle \cdot ,T(z_0) \rangle )\) and \(u(x) := \eta (T(x)) - \eta (S(x))\). Observe that, from the assumption \(\gamma (t) \ne \gamma (-t), \ \forall t \in [-1,1]\),

$$\begin{aligned} u(x) = \eta (T(x)) - \eta (-T(x)) \ne 0, \ \forall x \in F'. \end{aligned}$$

From this, we may assume that \(u(x)>0, \ \forall x \in F'\). Let \(\{f_j'\}_j\) and \(\{h_j'\}_j\) be sequences in \(C_c({\mathbb {R}}^n)\) and \(W_{pos}\) such that \(f_j'\) converges to \({\mathbf {1}}_B\) in and \(\Vert f_j'-h_j'\Vert _{\infty } < 1/j\). We obtain

$$\begin{aligned} 0 = (\mu _X - \mu _Y| h_j' \otimes \eta ) = \int _X h_j'(x) u(x) d{\mathcal {H}}^d(x) \rightarrow \int _{B} u(x) d{\mathcal {H}}^d(x) > 0, \end{aligned}$$

which is impossible. \(\square \)

Proof of Theorem 8

Thanks to the first term in E, any minimizing sequence of E is bounded in \(L^2([0,1],V)\). Let \(\{v_j\}\) be a subsequence of such minimizing sequence which converges weakly to some \({\bar{v}}\) in \(L^2([0,1],V)\). Using the results of [53] Chapter 7.2, we know that

$$\begin{aligned} \lim _{j \rightarrow \infty } \Vert (\varphi _1^{v_j} - \varphi _1^{{\bar{v}}})|_K \Vert _{1,\infty } = 0. \end{aligned}$$

Furthermore, for any \(\omega \in W\), we have

$$\begin{aligned}&\left| \left( (\varphi _1^{v_j})_{\#} \mu _0 - (\varphi _1^{{\bar{v}}})_{\#} \mu _0 | \omega \right) \right| \\&\quad =\bigg | \int _{K} J_S \varphi _1^{v_j}(x) \omega (\varphi _1^{v_j}(x),d_x \varphi _1^{v_j} \cdot S) - J_S\varphi _1^{{\bar{v}}}(x) \omega (\varphi _1^{{\bar{v}}}(x),d_x \varphi _1^{{\bar{v}}} \cdot S) \text {d} \mu _0 \bigg | \\&\quad \le \int _{K} |J_S \varphi _1^{v_j}(x)| \left| \omega (\varphi _1^{v_j}(x),d_x \varphi _1^{v_j} \cdot S) - \omega (\varphi _1^{{\bar{v}}}(x),d_x \varphi _1^{{\bar{v}}} \cdot S) \right| \text {d} \mu _0 \\&\qquad + \int _{K} \left| J_S \varphi _1^{v_j}(x) - J_S\varphi _1^{{\bar{v}}}(x) \right| \left| \omega (\varphi _1^{{\bar{v}}}(x),d_x \varphi _1^{{\bar{v}}} \cdot S) \right| \text {d} \mu _0 \\ \end{aligned}$$

Now, using the embedding \(W \hookrightarrow C_0^1({\mathbb {R}}^n \times {\widetilde{G}}^n_d)\)

$$\begin{aligned}&\left| \left( (\varphi _1^{v_j})_{\#} \mu _0 - (\varphi _1^{{\bar{v}}})_{\#} \mu _0 | \omega \right) \right| \\&\quad \le \left( \int _{K} |J_S \varphi _1^{v_j}(x)| \text {d} \mu _0 \right) \Vert \omega \Vert _{1,\infty } \Vert (\varphi _1^{v^N} - \varphi _1^{{\bar{v}}})|_K \Vert _{1,\infty } + C \Vert (\varphi _1^{v_j} - \varphi _1^{{\bar{v}}})|_K \Vert _{1,\infty } \\&\quad \le C' \Vert (\varphi _1^{v_j} - \varphi _1^{{\bar{v}}})|_K \Vert _{1,\infty }. \end{aligned}$$

Taking supremum over all \(\omega \in W\) with \(\Vert \omega \Vert _W \le 1\), we obtain that

$$\begin{aligned} \Vert (\varphi _1^{v_j})_{\#} \mu _0 - (\varphi _1^{{\bar{v}}})_{\#} \mu _0 \Vert _{W^*} \le C' \Vert (\varphi _1^{v_j} - \varphi _1^{{\bar{v}}})|_K \Vert _{1,\infty } \rightarrow 0 \end{aligned}$$

as \(j \rightarrow \infty \). Combining this with lower semicontinuity of \(v \mapsto \Vert v\Vert _{L^2([0,1],V)}^2\), we finally obtain that

$$\begin{aligned} E({\bar{v}}) \le \liminf _{j \rightarrow \infty } E(v_j) \end{aligned}$$

and hence \({\bar{v}}\) is a global minimizer. \(\square \)

Proof of Proposition 9

Recall that for all \(\phi \in \text {Diff}({\mathbb {R}}^n)\), \(g(\phi ) = \lambda \Vert \phi _{\#} \mu _0 - \mu _{tar} \Vert _{W^*}^2\) which we may rewrite as

$$\begin{aligned} g(\phi ) = \lambda (\phi _{\#} \mu _0 | K_W(\phi _{\#} \mu _0 -2\mu _{tar})) + \lambda \Vert \mu _{tar}\Vert _{W^*}^2. \end{aligned}$$

Thus, the variation with respect to \(\phi \) in the Banach space \({\mathcal {B}}\) writes

$$\begin{aligned} \partial _{\phi } g(\phi ) = \partial _{\phi } (\phi _{\#} \mu _0 | \omega _0) \end{aligned}$$

where \(\omega _0 \doteq 2\lambda K_W(\phi _{\#} \mu _0 -\mu _{tar}) \in W\). Moreover,

$$\begin{aligned} (\phi _{\#} \mu _0 | \omega _0) = \int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} \omega _0(\phi (x),d_x \phi \cdot T) J_T \phi (x) \text {d} \mu _0(x,T). \end{aligned}$$

Taking the variation with respect to \(\phi \) along any \(u \in C_0^1({\mathbb {R}}^n,{\mathbb {R}}^n)\), we obtain:

$$\begin{aligned} (\partial _{\phi } g(\phi ) | u) =&\int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} \partial _x \omega _0(\phi (x),d_x \phi \cdot T) \cdot u(x) J_T \phi (x) \text {d} \mu _0(x,T) \nonumber \\&+\int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} \partial _T \omega _0(\phi (x),d_x \phi \cdot T) \cdot (d_x u |_T) J_T \phi (x) d \mu _0(x,T) \nonumber \\&+\int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} \omega _0(\phi (x),d_x \phi \cdot T). \text {div}_T u(x). J_T \phi (x) \text {d} \mu _0(x,T) \end{aligned}$$
(37)

where the last term follows from the differentiation of Gram determinant matrices, while the notation \(\partial _T\) in the second term is a shortcut notation for differentiation on the Grassmannian which we do not explicit further here, we, however, refer to the similar computations done in [18] and to the developments in Sect. 6 for more details. For the first term, we can rely on the Young measure decomposition \(\mu _0 = |\mu _0| \otimes \nu _x\) introduced at the end of Sect. 2.1 which gives:

$$\begin{aligned} (1)= & {} \int _{{\mathbb {R}}^n} {\tilde{\alpha }}(\phi ,x) \cdot u(x) \ d |\mu _0|(x), \ \ \text {where} \ \ {\tilde{\alpha }}(\phi ,x) \\= & {} \int _{{\widetilde{G}}_d^n} \partial _x \omega _0(\phi (x),d_x \phi \cdot T) J_T \phi (x) \text {d}\nu _x(T). \end{aligned}$$

We can also rewrite the third term as:

$$\begin{aligned} (3)= & {} \int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} {\tilde{\gamma }}(\phi ,x,T) \ \text {div}_T u(x) \ \text {d} \mu _0(x,T), \ \ \text {with} \ \ {\tilde{\gamma }}(\phi ,x,T)\\= & {} \omega _0(\phi (x),d_x \phi \cdot T) \ J_T \phi (x). \end{aligned}$$

As for the second term in (37), for each (xT) the integrand involves a linear combination (depending on \(\phi \)) of the partial derivatives of u along the subspace T, i.e., of the elements of the matrix \(d_x u|_T \in {\mathbb {R}}^{n\times d}\). Thus, without attempting to specify this term explicitly, we can in general write it as \({\tilde{\beta }}(\phi ,x,T) d_x u|_T\) where \({\tilde{B}}\) is a continuous map from \({\mathcal {B}} \times {\mathbb {R}}^n \times {\tilde{G}}_d^n\) into \({\mathcal {L}}({\mathbb {R}}^{n\times d},{\mathbb {R}})\) giving us

$$\begin{aligned} (2) = \int _{{\mathbb {R}}^n \times {\widetilde{G}}_d^n} {\tilde{B}}(\phi ,x,T) d_x u|_T \ \text {d} \mu _0(x,T). \end{aligned}$$

The result of the theorem then follows by setting \(\alpha (x) \doteq {\tilde{\alpha }}(\varphi _1^v,x)\), \(\beta (x,T) \doteq {\tilde{\beta }}(\varphi _1^v,x,T)\) and \(\gamma (x,T)={\tilde{\gamma }}(\varphi _1^v,x,T)\). \(\square \)

Proof of Proposition 14

We can treat the case of each particle i separately and thus, without loss of generality, we may directly assume that \(N=1\). We write \(q(t)=(x(t),u^{(1)}(t),\cdots ,u^{(d)}(t))\), \(p(t)=(p^x(t),p^{u_1}(t),\ldots ,p^{u_d}(t))\) for the state and costate variables along an optimal trajectory and

$$\begin{aligned} U \doteq \text {Span}\{u^{(1)}(1),\cdots ,u^{(d)}(1)\}. \end{aligned}$$

Consider the group of linear transformations, \(G \doteq \mathrm{SL} (U) \oplus \mathrm{GL} (U^{\perp })\), i.e., for any \(\mathrm {g} \in G\),

where \(x_{U}\) and \(x_{U^{\perp }}\) are the orthogonal projections of x on U and \(U^{\perp }\), with and \(\mathrm {g}_{\perp } \in \mathrm{GL}(U^{\perp })\). The Lie algebra of G is \({\mathfrak {g}} = {\mathfrak {sl}}(U) \times {\mathcal {L}}(U^\perp )\) and \({\mathfrak {sl}}(U)\) is the set of all zero trace linear transformations of U. Now, consider the action of G on \({\mathbb {R}}^{(d+1)n}\) defined as:

$$\begin{aligned} \mathrm {g} \cdot q := (q_0,\mathrm {g}(q_1),\cdots ,\mathrm {g}(q_d)). \end{aligned}$$

for any \(q=(q_0,\ldots ,q_{d}) \in {\mathbb {R}}^{(d+1)n}\). We see that \(\mu ^{\mathrm {g}\cdot q(1)} = \mu ^{q(1)}\) for all \(\mathrm {g} \in G\) and therefore \(g(\mathrm {g}\cdot q(1)) = g(q(1))\).

Now, if we let \(\{\mathrm {g}_t\}\) be a smooth curve in G that satisfies \(\mathrm {g}_0 = id\) and \(\frac{d}{\text {d}\tau }|_{\tau =0} \mathrm {g}_\tau = h \in {\mathfrak {g}}\), differentiating the equality \(g(\mathrm {g}_\tau \cdot q(1)) = g(q(1))\) shows that for any \(h \in {\mathfrak {g}}\), we have

$$\begin{aligned} 0 = (p(1)|h \cdot q(1)) = \sum _{k=1}^{d} \langle p^{u_k}(1) , h(u^{(k)}(1)) \rangle \end{aligned}$$

Since \(h \in {\mathfrak {g}}\), we must have that \(h|_{U}\) is a zero trace linear map. For any \(1 \le i < j \le d\), we may choose h such that \(h(u^{(i)}(1)) = -h(u^{(j)}(1))\) and \(h(u^{(k)}(1)) = 0 , \ \forall k \notin \{i,j\}\), which leads to \(\langle u^{(i)}(1), p^{u_i}(1) \rangle = \langle u^{(j)}(1), p^{u_j}(1) \rangle \). Consequently,

$$\begin{aligned} \langle u^{(1)}(1), p^{u_1}(1) \rangle = \cdots = \langle u^{(d)}(1), p^{u_d}(1) \rangle =\alpha \end{aligned}$$

for some constant \(\alpha \). In addition, for any \(i \ne j\), we can also choose h such that \(h(u^{(i)}(1)) = u^{(j)}(1)\) and \(h(u^{(k)}(1))= 0 , \ \forall k \notin \{i,j\}\), which gives \(\langle u^{(i)}(1),p^{u_j}(1) \rangle = 0\). It results that \(D(1) = \alpha .I_{d \times d}\).

Finally, since D(t) is constant by Lemma 2, we obtain that

$$\begin{aligned} D(t) = \left( \begin{array}{ccc} \alpha &{} &{} 0 \\ &{} \ddots &{} \\ 0 &{} &{} \alpha \end{array} \right) , \end{aligned}$$

for all \(t \in [0,1]\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, HW., Charon, N. Metrics, Quantization and Registration in Varifold Spaces. Found Comput Math 21, 1317–1361 (2021). https://doi.org/10.1007/s10208-020-09484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-020-09484-7

Keywords

Mathematics Subject Classification

Navigation