Skip to main content
Log in

A Laplace Operator on Semi-Discrete Surfaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper studies a Laplace operator on semi-discrete surfaces. A semi-discrete surface is represented by a mapping into three-dimensional Euclidean space possessing one discrete variable and one continuous variable. It can be seen as a limit case of a quadrilateral mesh, or as a semi-discretization of a smooth surface. Laplace operators on both smooth and discrete surfaces have been an object of interest for a long time, also from the viewpoint of applications. There are a wealth of geometric objects available immediately once a Laplacian is defined, e.g., the mean curvature normal. We define our semi-discrete Laplace operator to be the limit of a discrete Laplacian on a quadrilateral mesh, which converges to the semi-discrete surface. The main result of this paper is that this limit exists under very mild regularity assumptions. Moreover, we show that the semi-discrete Laplace operator inherits several important properties from its discrete counterpart, like symmetry, positive semi-definiteness, and linear precision. We also prove consistency of the semi-discrete Laplacian, meaning that it converges pointwise to the Laplace–Beltrami operator, when the semi-discrete surface converges to a smooth one. This result particularly implies consistency of the corresponding discrete scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Alexa and M. Wardetzky. Discrete Laplacians on General Polygonal Meshes. ACM Trans. Graph., 30(4):1–10, 2011.

    Article  Google Scholar 

  2. M. Belkin, J. Sun, and Y. Wang. Discrete Laplace Operator on Meshed Surfaces. In Proc. of the 24th ACM Symposium on Computational Geometry, pages 278–287, 2008.

  3. A. Bobenko and B. Springborn. A Discrete Laplace-Beltrami Operator for Simplicial Surfaces. Discrete & Computational Geometry, 38(4):740–756, Dec. 2007.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bobenko and Y. Suris. Discrete Differential Geometry: Integrable Structure. Graduate studies in mathematics. American Math. Soc., 2008.

  5. T. H. Colding and W. P. Minicozzi. A Course in Minimal Surfaces, volume 121 of Graduate Studies in Mathematics. American Math. Soc., 2011.

  6. M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In SIGGRAPH ’99, pages 317–324, New York, 1999. ACM.

  7. R. J. Duffin. Distributed and lumped networks. J. Math. Mech., 8:793–826, 1959.

    MathSciNet  MATH  Google Scholar 

  8. G. Dziuk. Finite elements for the Beltrami operator on arbitrary surfaces. In Partial differential equations and calculus of variations, pages 142–155. Springer, Berlin, 1988.

  9. O. Karpenkov and J. Wallner. On offsets and curvatures for discrete and semidiscrete surfaces. Beitr. Algebra Geom., 55(1):207–228, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Liu, G. Xu, and Q. Zhang. A discrete scheme of Laplace-Beltrami operator and its convergence over quadrilateral meshes. Comput. Math. Appl., 55(6):1081–1093, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. H. MacNeal. The Solution of Partial Differential Equations by Means of Electrical Networks. PhD thesis, California Institute of Technology, 1949.

  12. C. Müller and J. Wallner. Semi-discrete isothermic surfaces. Results Math., 63(3-4):1395–1407, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experiment. Math., 2(1):15–36, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Rosenberg. The Laplacian on a Riemannian manifold, volume 31 of London Mathematical Society Student Texts. CUP, Cambridge, 1997.

  15. M. Wardetzky. Convergence of the cotangent formula: an overview. In Discrete differential geometry, volume 38 of Oberwolfach Semin., pages 275–286. Birkhäuser, Basel, 2008.

  16. M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun. Discrete Laplace operators: No free lunch. In Eurographics Symposium on Geometry Processing, pages 33–37. Eurographics Association, 2007.

  17. Y. Xiong, G. Li, and G. Han. Mean Laplace-Beltrami Operator for Quadrilateral Meshes. T. Edutainment, 5:189–201, 2011.

    Article  Google Scholar 

  18. G. Xu. Discrete Laplace-Beltrami operators and their convergence. Computer Aided Geometric Design, 21(8):767–784, 2004.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank J. Wallner for fruitful discussions and comments. This research was supported by the DFG-Collaborative Research Center, TRR 109, “Discretization in Geometry and Dynamics” and the Doctoral Program “Discrete Mathematics” through grants I 706-N26 and W1230 of the Austrian Science Fund (FWF). We further acknowledge support from NAWI Graz and are grateful to the anonymous reviewers for their remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Carl.

Additional information

Communicated by Wolfgang Dahmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carl, W. A Laplace Operator on Semi-Discrete Surfaces. Found Comput Math 16, 1115–1150 (2016). https://doi.org/10.1007/s10208-015-9271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9271-y

Keywords

Mathematics Subject Classification

Navigation