Skip to main content
Log in

Trail-following behavior by males of the wolf spider, Schizocosa ocreata (Hentz)

  • Article
  • Published:
Journal of Ethology Aims and scope Submit manuscript

Abstract

Male spiders are able to detect and respond to chemical cues deposited by females in the environment. In many species, detection of these chemicals may be the first indication a male has to the presence of a nearby female. In wolf spiders (Lycosidae), which do not produce webs, females leave a trail of silk and chemical cues as they move through the leaf-litter habitat. Males could increase encounter rates with receptive females if they were able to follow these trails. We used behavioral assays to determine whether male Schizocosa ocreata (Hentz) wolf spiders are able to detect and respond to cues resulting from a single-pass trail by a female, and whether they are able to determine the direction of female travel. Our focal males responded to virgin adult female trails with following behavior, but showed no propensity to follow trails from other conspecifics (subadult females or males). While males were able to follow a female trail, our observations and analysis indicates that they are not able to determine trail directionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al Abassi S, Birkett MA, Pettersson J, Pickett JA, Woodcock CM (1998) Ladybird beetle odour identified and found to be responsible for attraction between adults. Cell Mol Life Sci 54:876–879

    Article  CAS  Google Scholar 

  • Aspey WP (1976) Behavioral ecology of the “edge effect” in Schizocosa crassipes (Araneae: Lycosidae). Psyche 83:42–50

    Article  Google Scholar 

  • Ayyagari LR, Tietjen WJ (1986) Preliminary isolation of male-inhibitory pheromone of the spider Schizocosa ocreata (Araneae, Lycosidae). J Chem Ecol 13:237–244

    Article  Google Scholar 

  • Baruffaldi L, Costa FG, Rodríguez A, González A (2010) Chemical communication in Schizocosa malitiosa: evidence of a female contact sex pheromone and persistence in the field. J Chem Ecol 36:759–767

    Article  CAS  PubMed  Google Scholar 

  • Baur R, Haribal M, Renwick JAA, Städler E (1998) Contact chemoreception related to host selection and oviposition behavior in the monarch butterfly, Danaus plexippus. Physiol Entomol 23:7–19

    Article  CAS  Google Scholar 

  • Bénédet F, Leroy T, Gauthier N, Thibaudeau C, Thibout E, Renault S (2002) Gustatory sensilla sensitive to protein kairomones trigger host acceptance by an endoparasitioid. Proc R Soc Lond B 269:1879–1886

    Article  Google Scholar 

  • Bossert WH, Wilson EO (1963) The analysis of olfactory communication among animals. J Theor Biol 5:443–469

    Article  CAS  PubMed  Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of animal communication. Sinauer, Sunderland

    Google Scholar 

  • Bristowe WS, Locket GH (1926) The courtship of British lycosid spiders, and its probable significance. Proc Zool Soc Lond 1926:317–347

    Article  Google Scholar 

  • Bro-Jørgensen J (2010) Dynamics of multiple signalling systems: animal communication in a world in flux. Trends Ecol Evol 25:292–300

    Article  PubMed  Google Scholar 

  • Cady AB (1983) Microhabitat selection and locomotor activity of Schizocosa ocreata (Walckenaer) (Araneae: Lycosidae). J Arachnol 11:297–307

    Google Scholar 

  • Cady AB, Delaney KJ, Uetz GW (2011) Contrasting energetic costs of courtship signaling in two wolf spiders having divergent courtship behaviors. J Arachnol 39:161–165

    Article  Google Scholar 

  • Cardenas M, Jiros P, Pekar S (2012) Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99:597–605

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF (2003) Contact chemoreception in feeding by phytophagous insects. Annu Rev Entomol 48:455–484

    Article  CAS  PubMed  Google Scholar 

  • Delaney KJ, Roberts JA, Uetz GW (2007) Male signaling behavior and sexual selection in a wolf spider (Aranae: Lycosidae): a test for dual function. Behav Ecol Sociobiol 62:67–75

    Article  Google Scholar 

  • Dicke M, Grostal P (2001) Chemical detection of natural enemies by arthropods: an ecological perspective. Annu Rev Ecol Syst 32:1–23

    Article  Google Scholar 

  • Dondale CD, Redner JH (1990) The insects and arachnids of Canada Part 17. The wolf spiders, nurseryweb spiders and lynx spiders of Canada and Alaska (Araneae: Lycosidae, Pisauridae, and Oxyopidae). Research Branch Agriculture Canada, Ottawa

    Google Scholar 

  • El-Sayed AM (2014) The pherobase: database of pheromones and semiochemicals. http://www.pherobase.com. Accessed 31 JUL 2015

  • Foelix RF, Chu-Wang IW (1973) The morphology of spider sensilla II chemoreceptors. Tissue Cell 5:461–478

    Article  CAS  PubMed  Google Scholar 

  • Fowler-Finn KD, Hebets EA (2011a) The degree of response to increased predation risk corresponds to male secondary sexual traits. Behav Ecol 22:268–275

    Article  Google Scholar 

  • Fowler-Finn KD, Hebets EA (2011b) More ornamented males exhibit increased predation risk and antipredatory escapes, but not greater mortality. Ethology 117:102–114

    Article  Google Scholar 

  • Frey MA, Lonsdale DJ, Snell TW (1998) The influence of contact chemical signals on mate recognition in a harpacticoid copepod. Philos Trans R Soc Lond B 353:745–751

    Article  CAS  Google Scholar 

  • Gaskett AC (2007) Spider sex pheromones: emission, reception, structures, and functions. Biol Rev 82:27–48

    Article  CAS  PubMed  Google Scholar 

  • Gibson JS, Uetz GW (2008) Seismic communication and mate choice in wolf spiders: components of male seismic signals and mating success. Anim Behav 75:1253–1262

    Article  Google Scholar 

  • Gordon SD, Uetz GW (2011) Multimodal communication of wolf spiders on different substrates: evidence for behavioral plasticity. Anim Behav 81:367–375

    Article  Google Scholar 

  • Grafe TU, Preininger D, Sztatecsny M, Kasah R, Dehling JM, Proksch S, Hödl W (2012) Multimodal communication in a noisy environment: a case study of the Bornean rock frog Staurois parvus. PLoS ONE 7:1–8

    Article  Google Scholar 

  • Greenfield MD (2002) Signalers and recievers: mechanisms and evolution of arthropod communication. Oxford University Press, New York

    Google Scholar 

  • Hay ME (2011) Crustaceans as powerful models in aquatic chemical ecology. In: Breithaupt Y, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 41–60

    Google Scholar 

  • Hebets EA (2011) Current status and future directions of research in complex signaling. Curr Zool 57:i–v

  • Hebets EA (2011b) Current status and future directions of research in complex signaling. Curr Zool 57:i–v

    Article  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Article  Google Scholar 

  • Hebets EA, Uetz GW (1999) Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim Behav 57:865–887

    Article  CAS  PubMed  Google Scholar 

  • Hoefler CD, Person MH, Rypstra AL (2008) Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behav Ecol 19:974–979

    Article  Google Scholar 

  • Jacobson M (1972) Insect sex pheromones. Academic, New York

    Google Scholar 

  • Johnston RE (2003) Chemical communication in rodents: from pheromones to individual recognition. J Mammal 84:1141–1162

    Article  Google Scholar 

  • Jones RL (1986) Orientation by insect parasitoids. In: Payne TL, Birch MC, Kennedy CEJ (eds) Mechanisms in insect olfaction. Oxford University Press, New York, pp 149–156

    Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394

    Article  Google Scholar 

  • Kronestedt T (1979) Study on chemosensitive hairs in wolf spiders (Araneae: Lycosidae) by scanning electron microscopy. Zool Scr 8:279–285

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioural decisions made under risk of predation: a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Mason RT, Fales HM, Jones TH, Pannell LK, Chinn JW, Crews D (1989) Sex pheromones in snakes. Science 245:290–293

    CAS  PubMed  Google Scholar 

  • Moore PJ, Reagan-Wallin NL, Haynes KF, Moore AJ (1997) Odour conveys status on cockroaches. Nature 389:25

    Article  CAS  Google Scholar 

  • Newland PL, Yates P (2008) The role of contact chemoreception in egg-laying behavior of locusts. J Insect Physiol 54:273–285

    Article  CAS  PubMed  Google Scholar 

  • Norton S, Uetz GW (2005) Mating frequency in Schizocosa ocreata (Hentz) wolf spiders: evidence for a mating system with female monandry and male polygyny. J Arachnol 33:16–24

    Article  Google Scholar 

  • Okubo A, Levin SA (2001) Diffusion and ecological problems: modern perspectives, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Perret M (1992) Environmental and social determinants of sexual function in the male lesser mouse lemur (Microcebus murinus). Folia Primatol 59:1–25

    Article  CAS  PubMed  Google Scholar 

  • Pruden AJ, Uetz GW (2004) Assessment of potential predation costs of male decoration and courtship displays in wolf spiders using video digitization and playback. J Insect Behav 17:67–80

    Article  Google Scholar 

  • Richter CJJ (1970) Morphology and function of the spinning apparatus of the wolf spider Pardosa amentata (Cl.) (Araneae: Lycosidae). Zoomorphology 68:37–68

    Google Scholar 

  • Richter CJJ, Stolting HCJ, Vlijm L (1971) Silk production in adult females of the wolf spider Pardosa amentata (Lycosidae, Araneae). J Zool Lond 165:285–290

    Article  Google Scholar 

  • Roberts JA, Uetz GW (2004a) Chemical signaling in a wolf spider: a test of ethospecies discrimination. J Chem Ecol 30:1271–1284

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Uetz GW (2004b) Species-specificity of chemical signals: silk source affects discrimination of a wolf spider (Araneae: Lycosidae). J Insect Behav 17:477–491

    Article  Google Scholar 

  • Roberts JA, Uetz GW (2005) Information content of female chemical signals in the wolf spider, Schizocosa ocreata: male discrimination of reproductive state and receptivity. Anim Behav 70:217–223

    Article  Google Scholar 

  • Roberts JA, Taylor PW, Uetz GW (2006) Consequences of complex signaling: predator detection of multimodal cues. Behav Ecol 18:236–240

    Article  Google Scholar 

  • Roessingh P, Peterson SC, Fitzgerald TD (1988) The sensory bias of trail following in some lepidopterous larvae: contact chemoreception. Physiol Entomol 13:219–224

    Article  Google Scholar 

  • Rutledge CE, Millar JG, Romero CM, Hanks LM (2009) Identification of an important component of the contact sex pheromone of Callidiellum rufipenne (Coleoptera: Cerambycidae). Environ Entomol 38:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Schal C, Fan Y, Blomquist GJ (2003) Regulation of pheromone biosynthesis, transport, and emission in cockroaches. In: Blomquist GJ, Vogt RG (eds) Insect pheromone biochemistry and molecular biology. Elsevier, Oxford, pp 283–322

    Chapter  Google Scholar 

  • Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 110–150

    Chapter  Google Scholar 

  • Schulz S (2013) Spider pheromones—a structural perspective. J Chem Ecol 39:1–14

    Article  CAS  PubMed  Google Scholar 

  • Snell T (2011) Contact chemoreception and its role in zooplankton mate recognition. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 451–466

    Google Scholar 

  • Stratton GE, Uetz GW (1981) Acoustic communication and reproductive isolation in two species of wolf spiders. Science 214:575–577

    Article  Google Scholar 

  • Stratton GE, Uetz GW (1983) Communication via substratum-coupled stridulation and reproductive isolation in wolf spiders (Araneae: Lycosidae). Anim Behav 31:164–172

    Article  Google Scholar 

  • Stratton GE, Uetz GW (1986) The inheritance of courtship behavior and its role as a reproductive isolating mechanism in two species of Schizocosa wolf spiders (Araneae: Lycosidae). Evolution 40:129–141

    Article  Google Scholar 

  • Taylor PW, Roberts JA, Uetz GW (2006) Mating in the absence of visual cues by Schizocosa ocreata (Hentz 1844) wolf spiders (Araneae: Lycosidae). J Arachnol 34:501–505

    Article  Google Scholar 

  • Thiel M, Breithaupt T (2011) Chemical communication in crustaceans: research challenges for the twenty-first century. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 3–22

    Google Scholar 

  • Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 149:1140–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tichy H, Gingl E, Ehn R, Papke M, Schulz S (2001) Female sex pheromone of a wandering spider (Cupiennius salei): identification and sensory reception. J Comp Physiol A 187:75–78

    Article  CAS  PubMed  Google Scholar 

  • Tietjen WJ (1977) Dragline-following by male lycosid spiders. Psyche 84:165–178

    Article  Google Scholar 

  • Tietjen WJ (1979) Tests for olfactory communication in four species of wolf spiders (Araneae: Lycosidae). J Arachnol 6:197–206

    Google Scholar 

  • Tietjen WJ, Rovner JS (1980) Trail-following behaviour in two species of wolf spiders: sensory and etho-ecological concomitants. Anim Behav 28:735–741

    Article  Google Scholar 

  • Tietjen WJ, Rovner JS (1982) Chemical communication in lycosids and other spiders. In: Witt PN, Rovner JS (eds) Spider communication, mechanisms and ecological significance. Princeton University Press, Princeton, pp 249–279

    Google Scholar 

  • Trabalon M (2013) Chemical communication and contact cuticular compounds in spiders. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin, pp 125–140

    Chapter  Google Scholar 

  • Uetz GW (1979) The influence of variation in litter habitats on spider communities. Oecologia 40:29–42

    Article  Google Scholar 

  • Uetz GW, Denterlein G (1979) Courtship behavior, habitat, and reproductive isolation in Schizocosa rovneri Uetz and Dondale (Araneae: Lycosidae). J Arachnol 7:121–128

    Google Scholar 

  • Uetz GW, Roberts JA (2002) Multisensory cues and multimodal communication in spiders: insights from video/audio playback studies. Brain Behav Evol 59:222–230

    Article  PubMed  Google Scholar 

  • Uetz GW, Roberts JA, Taylor PW (2009) Multimodal communication and mate choice in wolf spiders: female response to multimodal versus unimodal signals. Anim Behav 78:299–305

    Article  Google Scholar 

  • Uetz GW, Roberts JA, Clark DL, Gibson JS, Gordon SD (2013) Multimodal signals increase active space of communication by wolf spiders in a complex litter environment. Behav Ecol Sociobiol 67:1471–1482

    Article  Google Scholar 

  • Uhl G, Elias DO (2011) Communication. In: Herberstein ME (ed) Spider behavior: flexibility and versatility. Cambridge University Press, New York, pp 127–189

    Chapter  Google Scholar 

  • Wisenden BD (2015) Chemical cues that indicate risk of predation. In: Sorensen PW, Wisenden BD (eds) Fish pheromones and related cues. Wiley, Oxford, pp 131–148

    Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

We are thankful to the Dawes Arboretum for allowing us to collect spiders on their grounds, and to S. Herrmann, C. Abell and A. Mariotti for their assistance in maintaining spiders in the laboratory. We extend additional thanks to A. Mariotti for assistance in the scoring of trials. Additionally, we thank The Ohio State University at Newark for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Bell.

Ethics declarations

Funding

This study was funded by The Ohio State University at Newark.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or Institutional guidelines for the care and use of animals were followed.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, R.D., Roberts, J.A. Trail-following behavior by males of the wolf spider, Schizocosa ocreata (Hentz). J Ethol 35, 29–36 (2017). https://doi.org/10.1007/s10164-016-0486-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10164-016-0486-4

Keywords

Navigation