Skip to main content
Log in

Evaluation of mechanical properties and leaching tests results of mortars containing waste bottom ash as replacement of cement

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The disposal of waste bottom ash (WBA) is an environmental and economic challenge for the manufacturer. Therefore, disposal of waste bottom ashes is important for sustainable production. In this study, the usability of WBA instead of cement in the mortar was investigated. For this purpose, the workability, ultrasonic pulse velocity (UPV), flexural strength (ff), compressive strength (fc), microstructure, and hazard potentials of mortars containing WBA were examined. Effect levels of the selected variables (replacement ratio: 0%, 5%, 10%, 15%, 25%, 35%, and 50%, specimen age: 28, 60, and 90 day) on the UPV, ff, and fc were determined by ANOVA, and response surfaces were created. UPV and fc were decreased at all specimen ages with an increasing replacement ratio. The R2 of the models for the UPV, ff, and fc is higher (0.9660, 0.8034, and 0.9029). According to the leaching test results, Cd, Pb, Hg, and As values of all mortar samples were below the detection limit (not detectable) in this evaluation. The Cr values in all mortar samples remained below the maximum concentration of 5 mg/L, which is the given restriction of TCLP procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Konak, (2018) Granüle yüksek fırın cürufu ve taban külü ince agregaları ile üretilmiş betonun gerilme şekil değiştirme davranışının incelenmesi Fen Bilimleri Enstitüsü

  2. Oproiu C-L, Voicu G, Bădănoiu A, Nicoară A-I (2021) The solidification/stabilization of wastewater (from a landfill leachate) in specially designed binders based on coal ash. Materials 14(19):5610. https://doi.org/10.3390/ma14195610

    Article  Google Scholar 

  3. F. Saltabaş, B. Tombul, M.Z. Yazgan, F. Yüksel, Ö. (2012) Ülkemizde Tehlikeli atık yönetimi ve bertaraf teknolojileri Tehlikeli Atık Yönetimi Eğitimi

  4. Kogbara RB, Ayotamuno JM, Onuomah I, Ehio V, Damka TD (2016) Stabilisation/solidification and bioaugmentation treatment of petroleum drill cuttings. Appl Geochem 71:1–8. https://doi.org/10.1016/j.apgeochem.2016.05.010

    Article  Google Scholar 

  5. Conner JR, Hoeffner SL (1998) A critical review of stabilization/solidification technology. Crit Rev Environ Sci Technol 28(4):397–462. https://doi.org/10.1080/10643389891254250

    Article  Google Scholar 

  6. Ramzi NIR, Shahidan S, Maarof MZ, Ali N (2016) Physical and chemical properties of coal bottom ash (CBA) from Tanjung Bin Power Plant, IOP Conference Series Materials Science and Engineering. IOP Publishing 160(1):012056

    Google Scholar 

  7. Klangvijit W, Sookramoon K (2018) Study of the mix cement properties of mortar cement used in masonry and plaster from the waste biscuit firing of ceramic. MATEC Web Conf EDP Sci 187:02005

    Article  Google Scholar 

  8. A.İ. Kaya, (2010) A study on blended bottom ash cements Middle East Technical University

  9. O. EPA, (2010) Human and Ecological Risk Assessment of Coal Combustion Wastes (Draft) Risk Assessment

  10. Rules C (2015) Hazardous and solid waste management system; disposal of coal combustion residuals from electric utilities: Final rule. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  11. A.C.A. 2016 Association Coal combustion product (CCP) & use survey report September

  12. Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43(3):313–336. https://doi.org/10.1016/j.resconrec.2004.06.007

    Article  Google Scholar 

  13. Prakash K, Sridharan A (2009) Beneficial properties of coal ashes and effective solid waste management. Pract Period Hazard Toxic Radioact Waste Manage 13(4):239–248. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000014

    Article  Google Scholar 

  14. Koçak Y (2011) Termik Santral Atığı Uçucu Külün Portland Çimentosu Özelliklerine Etkisi. Politeknik Dergisi 14(2):135–140

    Google Scholar 

  15. Argiz C, Sanjuán MÁ, Menéndez E (2017) Coal bottom ash for Portland cement production. Adv Mater Sci Eng. https://doi.org/10.1155/2017/6068286

    Article  Google Scholar 

  16. Oruji S, Brake NA, Nalluri L, Guduru RK (2017) Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Constr Build Mater 153:317–326. https://doi.org/10.1016/j.conbuildmat.2017.07.088

    Article  Google Scholar 

  17. Kula I, Olgun A, Erdogan Y, Sevinc V (2001) Effects of colemanite waste, cool bottom ash, and fly ash on the properties of cement. Cem Concr Res 31(3):491–494. https://doi.org/10.1016/S0008-8846(00)00486-5

    Article  Google Scholar 

  18. Menéndez E, Álvaro A, Hernández M, Parra J (2014) New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash. J Environ Manage 133:275–283. https://doi.org/10.1016/j.jenvman.2013.12.009

    Article  Google Scholar 

  19. Abdulmatin A, Tangchirapat W, Jaturapitakkul C (2018) An investigation of bottom ash as a pozzolanic material. Constr Build Mater 186:155–162. https://doi.org/10.1016/j.conbuildmat.2018.07.101

    Article  Google Scholar 

  20. Jaturapitakkul C, Cheerarot R (2003) Development of bottom ash as pozzolanic material. J Mater Civ Eng 15(1):48–53. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(48)

    Article  Google Scholar 

  21. Mangi SA, Wan Ibrahim M, Jamaluddin N, Arshad M, Ramadhansyah P (2019) Effects of ground coal bottom ash on the properties of concrete. J Eng Sci Technol 14(1):338–350

    Google Scholar 

  22. Bajare D, Bumanis G, Upeniece L (2013) Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. Proced Eng 57:149–158. https://doi.org/10.1016/j.proeng.2013.04.022

    Article  Google Scholar 

  23. Mangi SA, Wan Ibrahim MH, Jamaluddin N, Arshad MF, Mudjanarko SW (2019) Recycling of coal ash in concrete as a partial cementitious resource. Resources 8(2):99. https://doi.org/10.3390/resources8020099

    Article  Google Scholar 

  24. Khan RA, Ganesh A (2016) The effect of coal bottom ash (CBA) on mechanical and durability characteristics of concrete. Jo Build Mater Struct 3(1):31–42

    Article  Google Scholar 

  25. I. Milagre Martins, A. Gonçalves, J. Marques, 2010 Durability and strength properties of concrete containing coal bottom ash, Proceedings pro077: International RILEM Conference on Material Science-AdIPoC-Additions Improving Properties of Concrete-Theme 3 RILEM Publications SARL pp 275–283

  26. Armada Bras A, Faustino P (2016) Repair mortars and new concretes with coal bottom and biomass ashes using rheological optimisation. Int J Environ Res 10(2):203–216

    Google Scholar 

  27. Mangi SA, Ibrahim MHW, Jamaluddin N, Arshad MF, Memon SA, Shahidan S, Jaya RP (2019) Coal bottom ash as a sustainable supplementary cementitious material for the concrete exposed to seawater, AIP Conference Proceedings. AIP Publishing LLC 2119(1):020002

    Google Scholar 

  28. Argiz C, Moragues A, Menéndez E (2018) Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments. J Clean Prod 170:25–33. https://doi.org/10.1016/j.jclepro.2017.09.117

    Article  Google Scholar 

  29. Yüksel İ, Bilir T, Özkan Ö (2007) Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Build Environ 42(7):2651–2659. https://doi.org/10.1016/j.buildenv.2006.07.003

    Article  Google Scholar 

  30. Bai Y, Basheer P (2003) Influence of furnace bottom ash on properties of concrete. Proceedings of the Inst Civ Eng-Struct Build 156(1):85–92. https://doi.org/10.1680/stbu.2003.156.1.85

    Article  Google Scholar 

  31. Bai Y, Darcy F, Basheer P (2005) Strength and drying shrinkage properties of concrete containing furnace bottom ash as fine aggregate. Constr Build Mater 19(9):691–697. https://doi.org/10.1016/j.conbuildmat.2005.02.021

    Article  Google Scholar 

  32. Basheer PM, Bai Y (2005) Strength and durability of concrete with ash aggregate. Proceedings of the Inst Civil Eng-Struct Build 158(3):191–199. https://doi.org/10.1680/stbu.2005.158.3.191

    Article  Google Scholar 

  33. Abubakar AU, Baharudin KS (2012) Properties of concrete using tanjung bin power plant coal bottom ash and fly ash. Int J Sustain Constr Eng Technol 3(2):56–69

    Google Scholar 

  34. Singh M, Siddique R (2014) Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr Build Mater 50:246–256. https://doi.org/10.1016/j.conbuildmat.2013.09.026

    Article  Google Scholar 

  35. Al-Fasih MYM, Ibrahim MHW, Basirun NF, Jaya RP, Sani MSHM (2019) Influence of partial replacement of cement and sand with coal bottom ash on concrete properties. Carbon (C) 8(3):356–362

    Google Scholar 

  36. Majhi RK, Nayak AN (2019) Properties of concrete incorporating coal fly ash and coal bottom ash. J Inst Eng India Ser A 100(3):459–469

    Article  Google Scholar 

  37. Hamzah AF, Ibrahim MHW, Jamaluddin N, Jaya RP, Arshad M, Zainal Abidin N, Manan E, Omar N (2016) Nomograph of self compacting concrete mix design incorporating coal bottom ash as partial replacement of fine aggregates. J Eng App Sci 11(7):1671–1675

    Google Scholar 

  38. Ibrahim MW, Hamzah A, Jamaluddin N, Ramadhansyah P, Fadzil A (2015) Split tensile strength on self-compacting concrete containing coal bottom ash. Procedia Soc Behav Sci 195:2280–2289. https://doi.org/10.1016/j.sbspro.2015.06.317

    Article  Google Scholar 

  39. Singh M, Siddique R (2016) Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. J Clean Prod 112:620–630. https://doi.org/10.1016/j.jclepro.2015.08.001

    Article  Google Scholar 

  40. Balasubramaniam T, Thirugnanam G (2015) An experimental investigation on the mechanical properties of bottom ash concrete. Indian J Sci Technol. https://doi.org/10.17485/ijst/2015/v8i10/54307

    Article  Google Scholar 

  41. Standard A (2015) C618–15 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International: West Conshohocken. PA, USA

    Google Scholar 

  42. F.Ş. Keskin, 2016 Perlit ve taban külü katkılı harç özelliklerinin Taguchi deneysel tasarım yöntemi ile incelenmesi Kocaeli Üniversitesi Fen Bilimleri Enstitüsü

  43. Li X-G, Lv Y, Ma B-G, Chen Q-B, Yin X-B, Jian S-W (2012) Utilization of municipal solid waste incineration bottom ash in blended cement. J Clean Prod 32:96–100. https://doi.org/10.1016/j.jclepro.2012.03.038

    Article  Google Scholar 

  44. Koksal F, Gencel O, Sahin Y, Okur O (2021) Recycling bottom ash in production of eco-friendly interlocking concrete paving blocks. J Mater Cycles Waste Manage 23:985–1001. https://doi.org/10.1007/s10163-021-01186-8

    Article  Google Scholar 

  45. Yoon JY, Lee JY, Kim J (2019) Use of raw-state bottom ash for aggregates in construction materials. J Mater Cycles Waste Manage 21:838–849. https://doi.org/10.1007/s10163-019-00841-5

    Article  Google Scholar 

  46. Bharadwaj N, Sudipta R (2021) Properties of concrete containing fly ash and bottom ash mixture as fine aggregate. Int J Sustain Eng 14(4):809–819. https://doi.org/10.1080/19397038.2021.1920641

    Article  Google Scholar 

  47. Ankur N, Singh N (2021) Performance of cement mortars and concretes containing coal bottom ash: a comprehensive review. Renew Sustain Energy Rev 149:111361. https://doi.org/10.1016/j.rser.2021.111361

    Article  Google Scholar 

  48. T.S. Enstitüsü, 2016.TS EN 196–1 Çimento deney metotları-Bölüm 1: Dayanım tayini Türk Standartları Enstitüsü Ankara

  49. Yuksel I, Genç A (2007) Properties of concrete containing nonground ash and slag as fine aggregate. ACI Mater J 104(4):397

    Google Scholar 

  50. Andrade L, Rocha J, Cheriaf M (2009) Influence of coal bottom ash as fine aggregate on fresh properties of concrete. Constr Build Mater 23(2):609–614. https://doi.org/10.1016/j.conbuildmat.2008.05.003

    Article  Google Scholar 

  51. Kasemchaisiri R, Tangtermsirikul S (2007) A method to determine water retainability of porous fine aggregate for design and quality control of fresh concrete. Constr Build Mater 21(6):1322–1334. https://doi.org/10.1016/j.conbuildmat.2006.01.009

    Article  Google Scholar 

  52. Sani MSHM, Muftah F, Muda Z (2010) The properties of special concrete using washed bottom ash (WBA) as partial sand replacement. Int J Sustain Constr Eng Techno 1(2):65–76

    Google Scholar 

  53. Singh M, Siddique R (2013) Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resour Conserv Recycl 72:20–32. https://doi.org/10.1016/j.resconrec.2012.12.006

    Article  Google Scholar 

  54. T.S. Enstitüsü, 2000 TS EN 1015–3: Kagir harcı-deney metotları-bölüm 3: taze harç kıvamının tayini (yayılma tablası ile) Türk standartları Enstitüsü Ankara

  55. T.S. Enstitüsü, 2012 TS EN 12504–4 Beton Deneyleri Bölüm4: Ultrasonik Atımlı Dalga Hızının Tayini Türk standartları Enstitüsü Ankara

  56. E. USEPA, (1992) Method 1311: Toxicity characteristic leaching procedure United States Environmental Protection Agency: Washington DC USA Norm 1–35

  57. Stat-Ease, 2021 Design-Expert software version 13 trial Stat-Ease Inc. Minneapolis

  58. de Brito J, Kurda R (2021) The past and future of sustainable concrete: a critical review and new strategies on cement-based materials. J Clean Prod 281:123558. https://doi.org/10.1016/j.jclepro.2020.123558

    Article  Google Scholar 

  59. Domone P, Illston J (2010) Construction materials: their nature and behaviour. CRC Press, London

    Book  Google Scholar 

  60. Mehta PK, Monteiro PJ (2014) Concrete: microstructure, properties, and materials. McGraw-Hill Education, New York

    Google Scholar 

  61. Lin RS, Wang XY, Lee HS, Cho HK (2019) Hydration and microstructure of cement pastes with calcined Hwangtoh clay. Materials 12(3):458. https://doi.org/10.3390/ma12030458

    Article  Google Scholar 

  62. Seo SK, Chu YS, Shim KB, Lee JK, Song H (2019) The influence of FGD gypsum fabricated from limestone sludge on cement properties. J Korean Ceram Soc 53(6):676–681. https://doi.org/10.4191/kcers.2016.53.6.676

    Article  Google Scholar 

  63. Cerro-Prada E (2018) Cement microstructure: Fostering photocatalysis. In: Hosam El-Bin M S, Rehab O A R (ed) Cement Based Materials. IntechOpen Croatia

  64. Gao XF, Lo YT, Tam CM (2002) Investigation of micro-cracks and microstructure of high performance lightweight aggregate concrete. Build Environ 37(5):485–489. https://doi.org/10.1016/S0360-1323(01)00051-8

    Article  Google Scholar 

  65. Taylor HF (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  66. Official Gazette, 2010. Regulation on Landfilling of Wastes Official Gazette Date: 26.03.2010 Official Gazette Number: 27533

  67. G Günay, 2022 Usability of waste bottom ashes in mortars by stabilization/solidification method. Master’s Thesis Tekirdağ Namık Kemal University Institute of Natural and Applied Sciences Department of Environmental Engineering

Download references

Acknowledgements

This work was funded by the Tekirdağ Namık Kemal University Scientific Research Projects Coordination Unit under Project No. NKUBAP.06.YL.20.250.

Funding

Tekirdağ Namık Kemal Üniversitesi,NKUBAP.06.YL.20.250,Elçin Güneş

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Timur Cihan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günay, G., Cihan, M.T. & Güneş, E. Evaluation of mechanical properties and leaching tests results of mortars containing waste bottom ash as replacement of cement. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01976-w

Keywords

Navigation