Skip to main content
Log in

Hydrothermal defluorination of fluorobenzene in the presence of sodium hydroxide

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Since fluorinated organic compounds are widely used in various industries, generating large amounts of waste, an effective disposal method is increasingly demanded. In this study, fluorobenzene (FB) as a model fluorinated compound was subjected to high-pressure liquid water in a small bomb-type batch reactor in the presence of alkaline additives under hydrothermal conditions. Defluorination proceeded under alkaline hydrothermal conditions, with NaOH or KOH as the most effective additives tested. The major products were fluoride ions and phenol recovered in the aqueous product solution. For example, 90% fluorine from FB in fluoride ion form and 90% of phenol were recovered in a 1.2 mol kg−1 NaOH solution at 573 K for 120 min. The defluorination reaction was found to proceed via ipso substitution. The rate was expressed by second-order reaction kinetics with respect to concentrations of FB and OH with an activation energy of 113.4 kJ mol−1 and a pre-exponential factor of 8.52 × 1012 mol kg−1 min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui B, Jia S, Tokunaga E, Shibata N (2018) Defluorosilylation of fluoroarenes and fluoroalkanes. Nat Commun 9:4393. https://doi.org/10.1038/s41467-018-06830-w

    Article  Google Scholar 

  2. Ochoa-herrera V, Sierra-slvarez R, Somogyi A, Jacobsen NE, Wysocki VH, Field JA (2008) Reductive defluorination of perfluorooctane sulfonate. Environ Sci Technol 42(9):3260–3264. https://doi.org/10.1021/es702842q

    Article  Google Scholar 

  3. Qu Y, Zhang C, Li F, Chen J, Zhou Q (2010) Photo-reductive defluorination of perfluorooctanoic acid in water. Water Res 44(9):2939–2947. https://doi.org/10.1016/j.watres.2010.02.019

    Article  Google Scholar 

  4. Huang S, Jaffe PR (2019) Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by acidimicrobium sp strain A6. Environ Sci Technol 53(19):11410–11419. https://doi.org/10.1021/acs.est.9b04047

    Article  Google Scholar 

  5. Carvalho MF, Alves CCT, Ferreira MIM, Marco PD, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68(1):102–105. https://doi.org/10.1128/AEM.68.1.102-105.2002

    Article  Google Scholar 

  6. Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF (2020) Microbial degradation of two highly persistent fluorinated fungicides - epoxiconazole and fludioxonil. J Hazard Mater 394(15):122545. https://doi.org/10.1016/j.jhazmat.2020.122545

    Article  Google Scholar 

  7. Mai VH, Nikonov GI (2016) Hydrodefluorination of fluoroaromatics by isopropyl alcohol catalyzed by a ruthenium NHC complex an unusual role of the carbene ligand. ACS Catal 6(11):7956–7961. https://doi.org/10.1021/acscatal.6b02004

    Article  Google Scholar 

  8. Yamijala S, Shinde R, Wong BM (2020) Real-time degradation dynamics of hydrated perfluoroalkyl substances, (PFASs) in the presence of excess electrons. Phys Chem Chem Phys 22(13):6804. https://doi.org/10.1039/C9CP06797C

    Article  Google Scholar 

  9. Key BD, Howell RD, Criddle CS (1997) Fluorinated organics in the biosphere. Environ Sci Technol 31(9):2445–2454. https://doi.org/10.1021/es961007c

    Article  Google Scholar 

  10. Hori H, Yamamoto A, Hauakawa E, Taniyasu S, Yamashita N, Kutsuna S (2005) Efficient decomposition of environmentally persistent perfluorocaboxylic acids by use of persulfate as a phatochemical oxidant. Environ Sci Technol 39(7):2383–2388. https://doi.org/10.1021/es0484754

    Article  Google Scholar 

  11. Fukui M, Tanaka A, Kominami H (2020) Photocatalytic reductive defluorination of fluorinated compounds in aqueous alcohol suspensions of a metal-loaded titanium (IV) oxide. Chem Cat Chem 12(12):1–9. https://doi.org/10.1002/cctc.202000299

    Article  Google Scholar 

  12. Wang F, Lu X, Li X, Shih K (2015) Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ Sci Technol 49(9):5672–5680. https://doi.org/10.1021/es506234b

    Article  Google Scholar 

  13. Yang H, Gao H, Angelici RJ (1999) Hydrodefluorination of fluorobenzene and 1,2-difluorobenzene under mild conditions over rhodium pyridylphosphine and bipyridyl complexes tethered on a silica-supported palladium catalyst. Organometallics 18(12):2285–2287. https://doi.org/10.1021/OM990151E

    Article  Google Scholar 

  14. Ukisu Y, Miyadera T (1994) Hydrogen-transfer hydrodehalogenation of aromatic halides with alcohols in the presence of noble metal catalysts. J Mol Catal A 125(2–3):135–142. https://doi.org/10.1016/S1381-1169(97)00092-7

    Article  Google Scholar 

  15. Bentel MJ, Yu Y, Xu L, Li Z, Wong BM, Men Y, Liu J (2020) Enhanced degradation of perfluorocarboxylic acids (PFCAs) by UV/sulfite treatment: reaction mechanisms and system efficiencies at pH 12. Environ Sci Technol Lett 7(5):351–357. https://doi.org/10.1021/acs.estlett.0c00236

    Article  Google Scholar 

  16. Hori H, Yamamoto A, Hayakawa E, Taniyasu S, Yamasita N, Kutsuna S (2005) Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ Sci Technol 39:2383–2388. https://doi.org/10.1021/es0484754

    Article  Google Scholar 

  17. Singh RK, Fernando S, Baygi SF, Multari N, Thagard SM, Holsen TM (2019) Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process. Environ Sci Technol 53(5):2731–2738. https://doi.org/10.1021/acs.est.8b07031

    Article  Google Scholar 

  18. Xu L, Tang S, Wang K, Ma X, Niu J (2020) Insights into the Degradation and Detoxication Mechanisms of Aqueous Capecitabine in Electrochemical Oxidation Process. Chemosphere 241:125058. doi: https://doi.org/10.1016/j.chemosphere.2019.125058

  19. Xie J, Zhang C, Waite TD (2022) Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA). Water Res 216:118319. https://doi.org/10.1016/j.watres.2022.118319

    Article  Google Scholar 

  20. Moriwaki H, Takagi Y, Tanaka M, Tsuruho K, Okitsu K, Maeda Y (2005) Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ Sci Technol 39(9):3388–3392. https://doi.org/10.1021/es040342v

    Article  Google Scholar 

  21. Shende T, Andaluri G, Suri RPS (2019) Kinetic model for sonolytic degradation of non-volatile surfactants: perfluoroalkyl substances. Ultrason Sonochem 51:359–368. https://doi.org/10.1016/j.ultsonch.2018.08.028

    Article  Google Scholar 

  22. Bruton TA, Sedlak DL (2017) Treatment of aqueous film-forming foam by heat-activated persulfate under conditions representative of in situ chemical oxidation. Environ Sci Technol 51(23):13878–13885. https://doi.org/10.1021/acs.est.7b03969

    Article  Google Scholar 

  23. Sun C, Yu M, Li Y, Niu B, Qin F, Yan N, Xu Y, Zheng Y (2022) MoS2 nanoflowers decorated natural fiber-derived hollow carbon microtubes for boosting perfluorooctanoic acid degradation, Colloids Surf. A: Physicochem Eng Asp 642: 128670. doi: https://doi.org/10.1016/j.colsurfa.2022.128670

  24. Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012) Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation 23(5):653–662. https://doi.org/10.1007/s10532-012-9541-1

    Article  Google Scholar 

  25. Moore JT, Lu CC (2020) Catalytic hydrogenolysis of aryl C-F bonds using a bimetallic rhodium-indium complex. J Am Chem Soc 142(27):11641–11646. https://doi.org/10.1021/jacs.0c04937

    Article  Google Scholar 

  26. Dhital RN, Nomura K, Sato Y, Haesuwannakij S, Ehara M, Sakurai H (2020) Pt-Pd nanoalloy for the unprecedented activation of carbon-fluorine bond at low temperature. Bull Chem Soc Jpn 93(10):1180–1185. https://doi.org/10.1246/bcsj.20200112

    Article  Google Scholar 

  27. Baumgartner R, McNeill K (2012) Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environ Sci Technol 46(18):10199–10205. https://doi.org/10.1021/es302188f

    Article  Google Scholar 

  28. Wu B, Hao S, Choi Y, Higgins CP, Deeb R, Strathmann TJ (2019) Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ Sci Technol Lett 6(10):630–636. https://doi.org/10.1021/acs.estlett.9b00506

    Article  Google Scholar 

  29. Tester JW, Holgate HR, Armellini FJ, Webley PA, Killilea WR, Hong GT, Barner HE (1993) Supercritical water oxidation technology. Emerg Technol Hazard Waste Manag III 3:35–76. https://doi.org/10.1021/bk-1993-0518.ch003

    Article  Google Scholar 

  30. DiNaro JL, Howard JB, Green WH, Tester JW, Bozzelli JW (2000) Elementary Reaction Mechanism for Benzene Oxidation in Supercritical Water. J Phys Chem A 104(45):10576–10586. https://doi.org/10.1021/jp001390e

    Article  Google Scholar 

  31. Akiya AN, Savage PE (2002) Roles of water for chemical reactions in high-temperature water. Chem Rev 102(8):2725–2750. https://doi.org/10.1021/cr000668w

    Article  Google Scholar 

  32. Hori H, Oishi S, Kato H, Kodama R (2020) Complete mineralization of fluorinated ionic liquids in subcritical water in the presence of potassium permanganate. Ind Eng Chem Res 59(13):5566–5575. https://doi.org/10.1021/acs.iecr.9b06198

    Article  Google Scholar 

  33. Hori H, Nagata Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S (2006) Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environ Sci Technol 40(3):1049–1054. https://doi.org/10.1021/es0517419

    Article  Google Scholar 

  34. Funazukuri T, Mochizuki T, Wakao N (1994) Dechlorination rates of polyvinylchloride with water and organic solvents (in Japanese). Kagaku Kougaku Ronbunshu 20:579–584. https://doi.org/10.1252/kakoronbunshu.20.579

    Article  Google Scholar 

  35. Hashimoto K, Suga S, Wakayama Y, Funazukuri T (2008) Hydrothermal dechlorination of PVC in the presence of ammonia. J Mater Sci 43:2457–2462. https://doi.org/10.1007/s10853-007-2015-x

    Article  Google Scholar 

  36. Suga S, Wakayama Y, Funazukuri T (2005) Hydrothermal Dechlorination of poly (vinyl chloride) in the absence and the presence of hydrogen peroxide. In: Bockhorn H (ed) Mueller-Hagedorn, M. Selected papers presented at the third International Symposium on Feedstock Recycling of Plastics, Karlsruhe, pp 175–181

    Google Scholar 

  37. Sakabe J, Kimura Y, Endo J, Funazukuri T (2020) Debromination of tetrabromobisphenol A in aqueous amine solutions under hydrothermal conditions. J Water Process Eng 38:101553. https://doi.org/10.1016/j.jwpe.2020.101553

    Article  Google Scholar 

  38. Hao S, Choi YJ, Deeb RA, Strathmann TJ, Higgins CP (2022) Application of hydrothermal alkaline treatments for destraction of per- and polyfluoroalkyl substances in contaminated groundwater and soil. Environ Sci Technol 56(10):6647–6657. https://doi.org/10.1021/acs.est.2c00654

    Article  Google Scholar 

  39. Nozue K, Tagaya H (2021) Chemical recycling of waste Poly Vinyl Chloride (PVC) by the liquid-phase treatment. J Mater Cycles Waste Manag 23:489–504. https://doi.org/10.1007/s10163-020-01153-9

    Article  Google Scholar 

  40. Baumgartner R, Stieger GK, McNeill K (2013) Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environ Sci Technol 47(12):6545–6553. https://doi.org/10.1021/es401183v

    Article  Google Scholar 

  41. Ukisu Y (2019) Hydrogen-transfer hydrodehalogenation of aromatic halides with a silica-supported palladium catalyst in alkaline 2-propanol: comparison between brominated and chlorinated anisoles. React Kinet Mech Catal 128:41–52. https://doi.org/10.1007/s11144-019-01632-7

    Article  Google Scholar 

  42. Akimoto M, Ninomiya K, Takami S, Ishikawa M, Sato M, Washio K (2002) Hydrothermal dechlorination and denitrogenation of municipal-waste-plastics-derived fuel oil under sub- and supercritical conditions. Ind Eng Chem Res 41(22):5393–5400. https://doi.org/10.1021/ie020338x

    Article  Google Scholar 

  43. Yoshioka T, Furukawa K, Okuwaki A (2000) Chemical recycling of rigid-PVC by oxygen oxidation in NaOH solutions at elevated temperatures. Polym Degrad Stab 67(2):285–290. https://doi.org/10.1016/S0141-3910(99)00128-7

    Article  Google Scholar 

  44. Yoshioka T, Kameda T, Ieshige M, Okuwaki A (2008) Dechlorination behaviour of flexible poly (vinyl chloride) in NaOH/EG solution. Polym Degrad Stab 93(10):1822–1825. https://doi.org/10.1016/j.polymdegradstab.2008.07.009

    Article  Google Scholar 

  45. Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y, Fukushima Y, Yoshioka T (2020) Practical dehalogenation of automobile shredder residue in NaOH/ethylene glycol with an up-scale ball mill reactor. J Mater Cycles Waste Manag 22:1620–1629. https://doi.org/10.1007/s10163-020-01052-z

    Article  Google Scholar 

  46. Kumagai S, Hirahashi S, Grause G, Kameda T, Toyoda H, Yoshioka T (2018) Alkaline hydrolysis of PVC-coated PET fibers for simultaneous recycling of PET and PVC. J Mater Cycles Waste Manag 20:439–449. https://doi.org/10.1007/s10163-017-0614-4

    Article  Google Scholar 

  47. Pinkard BR (2022) Aqueous film-forming foam treatment under alkaline hydrothermal conditions. J Environ Eng 148(2):05021007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001974

    Article  Google Scholar 

  48. McMury J (2000) Organic Chemistry, 5th edn. Brooks/Cole, Tokyo, pp 618–622

    Google Scholar 

  49. Mallick S, Xu P (2018) Wgrthwein, E.U.; Studer, A. Silyldefluorination of fluoroarenes by concerted nucleophilic aromatic substitution. Angew Chem 131:289–293. https://doi.org/10.1002/anie.201808646

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Funazukuri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, J., Funazukuri, T. Hydrothermal defluorination of fluorobenzene in the presence of sodium hydroxide. J Mater Cycles Waste Manag 25, 3237–3245 (2023). https://doi.org/10.1007/s10163-023-01741-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01741-5

Keywords

Navigation