Skip to main content
Log in

Roles of various composts based on phosphate flotation waste, phosphogypsum and cactus in improving the tolerance of tomato plants to drought stress

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The use of composts promotes plant growth and physiology as a promising sustainable strategy. The main objective of this study is to evaluate the impact of phosphate flotation waste (PFW) and phosphogypsum (PPG) composts on the growth and physiology of tomato plants under two water regimes (40% field capacity (FC) and 80% FC). The experiment was conducted under controlled conditions using eight treatments: Control80%, Control40%, PFW80%, PFW40%, PPG80%, PPG40%, PFW + PPG80%, PFW + PPG40%. The results showed that the application of PFW and PPG composts alone and/or combined improved growth parameters as well as fresh and dry matter and physiology of tomato plants under 80 and 40% FC. When PFW and PPG were applied together in addition to the cactus, the growth parameters favour a significant increase due to the regular supply of mineral nutrients, the modification of the soil texture and most importantly their water-holding abilities, due to the clay composition of PFW. The results demonstrate the potential of PFW and PPG composts for improving and optimizing of soil fertility and crop productivity under water stress conditions. These organic amendments could be an efficient practice to improve growth and biological agriculture of tomato production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Centritto M, Wahbi S, Serraj R, Chaves MM (2005) Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate: II. Photosynthetic responses. Agric Ecosyst Environ 106:303–311. https://doi.org/10.1016/j.agee.2004.10.016

    Article  Google Scholar 

  2. Ali S, Rizwan M, Qayyum MF et al (2017) Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review. Environ Sci Pollut Res 24:12700–12712. https://doi.org/10.1007/s11356-017-8904-x

    Article  Google Scholar 

  3. Vassilev N, Vassileva M (2003) Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl Microbiol Biotechnol 61:435–440. https://doi.org/10.1007/s00253-003-1318-3

    Article  Google Scholar 

  4. Schneider KD, Thiessen Martens JR, Zvomuya F et al (2019) Options for improved phosphorus cycling and use in agriculture at the field and regional scales. J Environ Qual 48:1247–1264. https://doi.org/10.2134/jeq2019.02.0070

    Article  Google Scholar 

  5. Kour D, Rana KL, Yadav AN et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  6. Meddich A, Oufdou K, Boutasknit A et al (2020) Use of organic and biological fertilizers as strategies to improve crop biomass, yields and physicochemical parameters of soil. Nutrient Dynamics for Sustainable Crop Production. Springer, Singapore, pp 247–288

    Chapter  Google Scholar 

  7. Tian Y, Wang Q, Zhang W, Gao L (2016) Reducing environmental risk of excessively fertilized soils and improving cucumber growth by Caragana microphylla-straw compost application in long-term continuous cropping systems. Sci Total Environ 544:251–261. https://doi.org/10.1016/j.scitotenv.2015.11.091

    Article  Google Scholar 

  8. Sommer R, Ryan J, Masri S et al (2011) Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res 115–116:39–46. https://doi.org/10.1016/j.still.2011.06.003

    Article  Google Scholar 

  9. Weber J, Kocowicz A, Bekier J et al (2014) The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. Eur J Agron 54:54–60. https://doi.org/10.1016/j.eja.2013.11.014

    Article  Google Scholar 

  10. Hernández T, Chocano C, Moreno JL, García C (2014) Towards a more sustainable fertilization: combined use of compost and inorganic fertilization for tomato cultivation. Agric Ecosyst Environ 196:178–184. https://doi.org/10.1016/j.agee.2014.07.006

    Article  Google Scholar 

  11. Moharana PC, Biswas DR (2016) Assessment of maturity indices of rock phosphate enriched composts using variable crop residues. Bioresource Technol 222:1–13. https://doi.org/10.1016/j.biortech.2016.09.097

    Article  Google Scholar 

  12. Afilal ME, Mouncif M, Benyamna A (2007) Valorisation des déchets organiques par fermentation méthanique. Revue des Energ Renouv 7:9–12

    Google Scholar 

  13. Renou S, Poulain S, Gagnaire De Cadarache J et al (2008) Lixiviat de centre de stockage: déchet généré par des déchets. L’eau, l’industrie, les nuisances 310:37–43

    Google Scholar 

  14. Elfadil S, Bouchdoug M, Jaouad A (2016) Physico-chemical characterization of phosphate flotation waste and its potential as a composting amendment. Imperial J Interdiscip Res 2:71–77

    Google Scholar 

  15. Haibin L, Zhenling L (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recycl 54:1331–1340. https://doi.org/10.1016/j.resconrec.2010.05.005

    Article  Google Scholar 

  16. Elfadil S, Jaouad A, Mahrouz M, Bouchdoug M (2019) Mineral additives and cactus added to enriched animal manure as compost for enhancing chickpea agricultural efficiency. Appl Ecol Environ Res 17:13395–13405

    Article  Google Scholar 

  17. Boutasknit A, Anli M, Tahiri A et al (2020) Potential effect of horse manure-green waste and olive pomace-green waste composts on physiology and yield of garlic (Allium sativum L.) and soil fertility. Gesunde Pflanzen 72:285–295. https://doi.org/10.1007/s10343-020-00511-9

    Article  Google Scholar 

  18. Boutasknit A, Ait-Rahou Y, Anli M et al (2021) Improvement of garlic growth, physiology, biochemical traits, and soil fertility by Rhizophagus irregularis and compost. Gesunde Pflanzen. https://doi.org/10.1007/s10343-020-00533-3

    Article  Google Scholar 

  19. Elfadil S, Hamamouch N, Jaouad A et al (2020) The effect of phosphate flotation wastes and phosphogypsum on cattle manure compost quality and plant growth. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-00997-5

    Article  Google Scholar 

  20. Ait-El-Mokhtar M, Baslam M, Ben-Laouane R et al (2020) Alleviation of detrimental effects of salt stress on date palm (Phoenix dactylifera L) by the application of arbuscular mycorrhizal fungi and/or compost. Front Sustainable Food Syst 4:131. https://doi.org/10.3389/fsufs.2020.00131

    Article  Google Scholar 

  21. Anli M, Symanczik S, El Abbassi A et al (2021) Use of arbuscular mycorrhizal fungus Rhizoglomus irregulare and compost to improve growth and physiological responses of Phoenix dactylifera ‘Boufgouss’. Plant Biosyst 3504:1–9. https://doi.org/10.1080/11263504.2020.1779848

    Article  Google Scholar 

  22. Ben-Laouane R, Ait-El-Mokhtar M, Anli M et al (2020) Green compost combined with mycorrhizae and rhizobia: a strategy for improving alfalfa growth and yield under field conditions. Gesunde Pflanzen 73:193–207. https://doi.org/10.1007/s10343-020-00537-z

    Article  Google Scholar 

  23. Boutasknit A, Baslam M, Ait-El-Mokhtar M et al (2020) Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in)organic adjustments. Plants 9:80. https://doi.org/10.3390/plants9010080

    Article  Google Scholar 

  24. Zhang L, Sun X (2016) Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste. Waste Manag 48:115–126. https://doi.org/10.1016/j.wasman.2015.11.032

    Article  Google Scholar 

  25. Manolikaki I, Diamadopoulos E (2017) Ryegrass yield and nutrient status after biochar application in two Mediterranean soils. Arch Agron Soil Sci 63:1093–1107. https://doi.org/10.1080/03650340.2016.1267341

    Article  Google Scholar 

  26. Liu X, Li L, Li M et al (2018) AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci Rep 8:2250. https://doi.org/10.1038/s41598-018-20542-7

    Article  Google Scholar 

  27. Anli M, Baslam M, Tahiri A et al (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:1560. https://doi.org/10.3389/fpls.2020.516818

    Article  Google Scholar 

  28. Koh E, Charoenprasert S, Mitchell AE (2012) Effects of industrial tomato paste processing on ascorbic acid, flavonoids and carotenoids and their stability over one-year storage. J Sci Food Agric 92:23–28. https://doi.org/10.1002/jsfa.4580

    Article  Google Scholar 

  29. Lu Z, Wang J, Gao R et al (2019) Sustainable valorisation of tomato pomace: a comprehensive review. Trends Food Sci Technol 86:172–187. https://doi.org/10.1016/j.tifs.2019.02.020

    Article  Google Scholar 

  30. Du L, Tian Q, Yu T et al (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data. Int J Appl Earth Obs Geoinf 23:245–253. https://doi.org/10.1016/j.jag.2012.09.010

    Article  Google Scholar 

  31. Hu Y, Poh HM, Chua NH (2006) Erratum: The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth (Plant Journal (2006) 47 (1–9)). Plant J 47:490. https://doi.org/10.1111/j.1365-313X.2006.02858.x

    Article  Google Scholar 

  32. Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86. https://doi.org/10.3389/fpls.2014.00086

    Article  Google Scholar 

  33. Roca-Pérez L, Martínez C, Marcilla P, Boluda R (2009) Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere 75:781–787. https://doi.org/10.1016/j.chemosphere.2008.12.058

    Article  Google Scholar 

  34. Nadeem SM, Imran M, Naveed M, Khan MY, MA, Zahir ZA, E. David Crowley, (2017) Synergistic use of biochar, compost and plant growth promoting rhizobacteria for enhancing cucumber growth under water deficit conditions. J Sci Food Agric 97:5139–5145

    Article  Google Scholar 

  35. Madejón P, Alaejos J, García-Álbala J et al (2016) Three-year study of fast-growing trees in degraded soils amended with composts: effects on soil fertility and productivity. J Environ Manag 169:18–26. https://doi.org/10.1016/j.jenvman.2015.11.050

    Article  Google Scholar 

  36. Kohler J, Caravaca F, Azcón R et al (2015) The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ 514:42–48. https://doi.org/10.1016/j.scitotenv.2015.01.085

    Article  Google Scholar 

  37. Rady MM, Semida WM, Hemida KA, Abdelhamid MT (2016) The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int J Recycling Org Waste Agric 5:311–321. https://doi.org/10.1007/s40093-016-0141-7

    Article  Google Scholar 

  38. El Amerany F, Rhazi M, Wahbi S et al (2020) The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Sci Hortic 261:109015. https://doi.org/10.1016/j.scienta.2019.109015

    Article  Google Scholar 

  39. Chang KH, Wu RY, Chang GP et al (2012) Effects of nitrogen concentration on growth and nutrient uptake of Anthurium andraeanum Lind. cultivated in coir under different seasonal conditions. HortScience 47:515–521

    Article  Google Scholar 

  40. Baslam M, Qaddoury A, Goicoechea N (2014) Role of native and exotic mycorrhizal symbiosis to develop morphological, physiological and biochemical responses coping with water drought of date palm, Phoenix dactylifera.. Trees Struct Funct 28:161–172. https://doi.org/10.1007/s00468-013-0939-0

    Article  Google Scholar 

  41. Meddich A, Jaiti F, Bourzik W et al (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Sci Hortic 192:468–474. https://doi.org/10.1016/j.scienta.2015.06.024

    Article  Google Scholar 

  42. Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750. https://doi.org/10.1093/jxb/erh188

    Article  Google Scholar 

  43. Bahadur A, Batool A, Nasir F et al (2019) Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci 20:1–18. https://doi.org/10.3390/ijms20174199

    Article  Google Scholar 

  44. Ben-Laouane R, Baslam M, Ait-El-mokhtar M et al (2020) Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8:1–27. https://doi.org/10.3390/microorganisms8111695

    Article  Google Scholar 

  45. Głąb T, Żabiński A, Sadowska U et al (2020) Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties. Soil Tillage Res 197:104493. https://doi.org/10.1016/j.still.2019.104493

    Article  Google Scholar 

  46. Nogués I, Muzzini V, Loreto F, Bustamante MA (2015) Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci Total Environ 538:768–778. https://doi.org/10.1016/j.scitotenv.2015.08.080

    Article  Google Scholar 

  47. Gondek M, Weindorf DC, Thiel C, Kleinheinz G (2020) Soluble salts in compost and their effects on soil and plants: a review. Compost Sci Utilization 28:59–75. https://doi.org/10.1080/1065657X.2020.1772906

    Article  Google Scholar 

  48. Abd El-Mageed TA, El-Sherif AMA, Abd El-Mageed SA, Abdou NM (2019) A novel compost alleviate drought stress for sugar beet production grown in Cd-contaminated saline soil. Agric Water Manag 226:105831. https://doi.org/10.1016/j.agwat.2019.105831

    Article  Google Scholar 

  49. Begum N, Ahanger MA, Su Y et al (2019) Improved drought tolerance by amf inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 8:579. https://doi.org/10.3390/plants8120579

    Article  Google Scholar 

  50. Mathur S, Jajoo A (2020) Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Ind Crops Prod 143:111934. https://doi.org/10.1016/j.indcrop.2019.111934

    Article  Google Scholar 

  51. Zainul A, Koyro H-W, Huchzermeyer B et al (2017) impact of a biochar or a compost-biochar mixture on water relation, nutrient uptake and photosynthesis of Phragmites karka. Pedosphere 160:1–22. https://doi.org/10.1016/s1002-0160(17)60362-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the European Union’s Horizon 2020 research and innovation program under Grant agreement No 862555 (Prof. Meddich Abdelilah). The authors would like to think anonymous reviewer for his useful comments. Mr. Bousetta (REMINEX Marrakech) is thanked for the ICP analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Boutasknit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elfadil, S., Meddich, A., Boutasknit, A. et al. Roles of various composts based on phosphate flotation waste, phosphogypsum and cactus in improving the tolerance of tomato plants to drought stress. J Mater Cycles Waste Manag 24, 1832–1841 (2022). https://doi.org/10.1007/s10163-022-01440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01440-7

Keywords

Navigation