Skip to main content
Log in

The effect of different moisture levels on the toluene desorption rates of modified natural zeolite during MW irradiation

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Regeneration of zeolite using microwave heating has been investigated focusing on the removal of toluene by desorption from zeolite samples. Studies were focused on the effect of physicochemical characteristics of three types of zeolite namely Na-rich natural zeolite (clinoptilolite), synthesized and heat treated on the toluene desorption ratio. In this work, it was shown that, in case of synthesized zeolite an increasing number of pores and their diffusion rate on the surface of samples caused by the sintering process resulted in an increase in the adsorption capacity compared to natural and heat-treated samples. The desorption experiment was carried out in MW irradiation time for about 1 h in which the temperature of zeolites samples was raised to almost 400 °C. Moisture had a significant effect on the desorption characteristics of zeolites. Maximum desorption ratios were obtained after approximately 30 min for heat-treated and synthesized samples when the moisture content was adjusted to 20 % of sample weight. In general, among the samples used in this study, synthesized zeolite showed the greatest absorption capacity and most efficient desorption ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim kJ, Ahn HG (2011) The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating. J Microporous Mesoporous Mater 152:78–83. doi:10.1016/j.micromeso.2011.11.051

    Article  Google Scholar 

  2. Dehdashti A, Khavanin A, Rezaee A, Asilian H (2010) Regeneration of granular activated carbon saturated with gaseous toluene by microwave irradiation. Turk J Eng Environ Sci 34:49–58

    Google Scholar 

  3. Takamura Y, Narita S, Aoki J, Hironaka S, Uchida S (2001) Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas. J Sep Purif Technol 24:519–528. doi:10.1016/S1383-5866(01)00151-4

    Article  Google Scholar 

  4. Kikkinides ES, Yang RT, Cho SH (1993) Concentration and recovery of CO2 from flue gas by pressure swing adsorption. J Ind Eng Chem Res 32:2714–2720. doi:10.1021/ie00023a038

    Article  Google Scholar 

  5. Merel J, Clausse M, Meunier F (2008) Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. J Ind Eng Chem Res 47:209–215. doi:10.1021/ie071012x

    Article  Google Scholar 

  6. Nezamzadeh-Ejhieh A, Esmaeilian A (2012) Application of surfactant modified zeolite carbon paste electrode (SMZ-CPE) towards potentiometric determination of sulfate. Microporous Mesoporous Mater 147:302–309. doi:10.1016/j.micromeso.2011.06.026

    Article  Google Scholar 

  7. Nezamzadeh-Ejhieh A, Nematollahi Z (2011) Surfactant modified zeolite carbon paste electrode (SMZ-CPE) as a nitrate elective electrode. Electrochim Acta 56:8334–8341. doi:10.1016/j.electacta.2011.07.013

    Article  Google Scholar 

  8. Haque KE, Chen TT, Dutrizac JE, Wyslouzil W, Kashyap S (1984) The relative transparency of minerals to microwave radiation. J Can Metall Q 23:349–351

    Article  Google Scholar 

  9. Ania CO, Parra JB, Menedez JA, Pis JJ (2005) Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. J Microporous Mesoporous Mater 85:7–15. doi:10.1016/j.micromeso.2005.06.013

    Article  Google Scholar 

  10. Nezamzadeh-Ejhieh A, Khorsandi M (2010) Photo decolorization of Eriochrome Black T using NiS–P zeolite as a heterogeneous catalyst. J Hazard Mater 176:629–637. doi:10.1016/j.jhazmat.2009.11.077

    Article  Google Scholar 

  11. Guisnet M, Gilson JP (2002) Zeolite for cleaner technologies. Imperical College Press, London, pp 301–310

    Google Scholar 

  12. Nezamzadeh-Ejhieh A, Hashemi HS (2011) Voltammetric determination of cysteine using carbon paste electrode modified with Co (II)–Y zeolite. Talanta 88:201–208. doi:10.1016/j.talanta.2011.10.032

    Article  Google Scholar 

  13. Nezamzadeh-Ejhieh A, Kabiri-Samani M (2013) Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. J Hazard Mater 260:339–349. doi:10.1016/j.jhazmat.2013.05.014

    Article  Google Scholar 

  14. Nezamzadeh-Ejhieh A, Moazzeni N (2013) Sunlight photodecolorization of a mixture of methyl orange and bromocresol green by CuS incorporated in a clinoptilolite zeolite as a heterogeneous catalyst. J Ind Eng Chem 19:1433–1442. doi:10.1016/j.jiec.2013.01.006

    Article  Google Scholar 

  15. Caro J, Noack M, Kolsch P, Schafer R (2000) Zeolite membranes—state of their development and perspective. J Microporous Mesoporous Mater 38:3–24. doi:10.1016/S1387-1811(99)00295-4

    Article  Google Scholar 

  16. Maesen T, Marcus B (2001) The zeolite scene—an overview. Stud Surf Sci Catal 137:1–9. doi:10.1016/S0167-2991(01)80242-1

    Article  Google Scholar 

  17. McLeary EE, Jansen JC, Kapteijn F (2006) Zeolite based film, membranes and membrane reactor: progress and prospects. J Microporous Mesoporous Mater 90:198–220. doi:10.1016/j.micromeso.2005.10.050

    Article  Google Scholar 

  18. Kawamura K, Endo H (1996) Preparation of porous alumina and its bending strength. J Ceram Soc Jpn 104:719–722

    Article  Google Scholar 

  19. Chang DC, Hellring SD, Miale JN, Schmitt KD, Briqandi PW, Wu EL (1985) Insertion of aluminum into high-silica-content zeolite frameworks. Part 3. Hydrothermal transfer of aluminum from Al2O3 into [Al] ZSM-5 and [B] ZSM-5. J Chem Soc 81:2215–2224. doi:10.1039/F19858102215

    Google Scholar 

  20. Shihabi DS, Garwood WE, Chu P, Miale JN, Lago RM, Chu CTW, Chang DC (1985) Aluminum insertion into high-silica zeolite frameworks: II. Binder activation of high-silica ZSM-5. J Catal 93:471–474. doi:10.1016/0021-9517(85)90195-2

    Article  Google Scholar 

  21. Ghadiri SK, Nabizadeh R, Mahvi AH, Nasseri S, Kazemian H, Mesdaghinia AR, Nazmara S (2010) Methyl tert-butyl ether adsorption on surfactant modified natural zeolites. Iran J Environ Health Sci Eng 7:241–252

    Google Scholar 

  22. Lin YC, Bai H (2006) Temperature effect on pore structure of nanostructured zeolite particles synthesized by aerosol spray method. Aerosol Air Qual Res 6:43–53

    Google Scholar 

  23. Chen KW, Davis HT, Davis EA, Gordon J (2004) Heat and mass transfer in water-laden sandstone. J Microw heat 31:842–848. doi:10.1002/aic.690310521

    Google Scholar 

  24. Menna RS, Bhattachrya S, Chatterjee R (2010) Development of “tuned microwave absorbers” using U-type hexaferrite. J Mater Des 31:3220–3226. doi:10.1016/j.matdes.2010.02.019

    Article  Google Scholar 

  25. Wei J, Liu J, Li S (2007) Electromagnetic and microwave absorption properties of Fe3O4 magnetic films plated of hollow glass spheres. J Magn Magn Mater 312:414–417. doi:10.1016/j.jmmm.2006.11.128

    Article  Google Scholar 

  26. Kurlyandskaya GV, Cunanan J, Bhagat SM, Aphesteguy JC, Jacoco SE (2007) Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. J Phys Chem Sol 68:1527–1532. doi:10.1016/j.jpcs.2007.03.031

    Article  Google Scholar 

  27. Ohgushi T, Komarneni S, Bhalla AS (2001) Mechanism of microwave heating of zeolite A. J Porous Mater 8:23–37

    Article  Google Scholar 

  28. Goto Y, Fukushima Y, Ratu P, Imada Y, Kubota Y, Sugi Y, Ogura M, Mjourna Matsukata (2002) Mesoporous materials from zeolite. J Porous Mater 19:43–49

    Article  Google Scholar 

  29. Vassylyev OY, Hall GH, Khinast JG (2006) Modification of zeolite surface by Grgnard reagent. J Porous Mater 13:5–13

    Article  Google Scholar 

  30. Li B, Wang L, Jin Q, Guo Z, Tang S, Ding D (2002) Theoretical studies of CDS clusters in zeolite Y. J Porous Mater 9:287–291

    Article  Google Scholar 

  31. Van Heijnsbergen D, Von Helden G, Meijer G, Duncan MA (2002) Infrared resonance-enhanced multiphoton ionization spectroscopy of magnesium oxide clusters. J chem phys 116:2400–2408

    Article  Google Scholar 

  32. Ertu˘grul I, Alime I (2007) Dielectric behavior of the catalyst zeolite NaY. Turk J Chem 31:523–530

    Google Scholar 

  33. Rahi GS, Rich JR (2011) Effect of moisture on efficiency of microwaves to control plant parasitic nematodes in soil. J Microw Power Electromagn Energy 45:86–93

    Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Environmental Engineering Department of Chonbuk National University in 2009. The authors also wish to acknowledge the Climate Change Specialization Graduate School program of Chonbuk National University for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Su Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, G.S. The effect of different moisture levels on the toluene desorption rates of modified natural zeolite during MW irradiation. J Mater Cycles Waste Manag 18, 113–122 (2016). https://doi.org/10.1007/s10163-014-0327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-014-0327-x

Keywords

Navigation