Skip to main content

Advertisement

Log in

Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC)

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this study a carbon-rich product was achieved by hydrothermal carbonization (HTC) of dead leaves at different treatment temperatures of 200–250 °C. Biomass was treated with hot deionized water for 30 min. The main objective of this study was to calculate the energy generation capability of dead leaves hydrochar by HTC process. The secondary objective was to analyze the physiochemical properties of hydrochar. There was a significant increase in the energy content and energy yield while decrease in yield of hydrochar was observed with increase in temperature. Surface area of hydrochar was maximum of 2.09 m2/g which was obtained when heated at 250 °C. Feedstock was having pore diameter of 8.26 nm which begin to increase on heating. The highest was reported at 220 °C of 21.79 with 163 % of increase. At 220 °C pore volume was also highest of 9.86 × 10−3. The highest energy content of 19.98 MJ/kg was obtained when the feedstock was heated at 240 °C which showed 21 % increase in energy content compared to that of raw biomass. Similarly, energy yield was also highest (91.67 %) at 240 °C. Therefore, it can be concluded that high-energy content hydrochar can be recovered when carbonized at 240 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ling PX, Zheng JS, Feng X, Run CS (2012) Hydrothermal carbonization of lignocellulosic biomass. Bioresour Technol 118:619–623

    Article  Google Scholar 

  2. Lu X, Flora RVJ, Berge ND (2014) Influence of process water quality on hydrothermal carbonization of cellulose. Bioresour Technol 154:229–239

    Article  Google Scholar 

  3. Dong R, Zhang Y, Chrisitianson LL, Funk TL, Wang X, Wang Z (2009) Product distribution and implication of hydrothermal conversion of swine manure at low temperatures. Trans ASABE 52(4):1239–1248

    Article  Google Scholar 

  4. Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  5. Berge ND, Ro KS, Mao J, Flora JRV, Chappell MA, Bae S (2011) Hydrothermal carbonization of municipal waste streams. Environ Sci Technol 45(13):5696–5703

    Article  Google Scholar 

  6. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ (2010) Hydrothermal carbonization of microalgae. Biomass Bio 34(6):875–882

    Article  Google Scholar 

  7. Garcia AL, Torri C, Samori C, Vander SJ, Fabbri D, Kersten SRA (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26(1):642–657

    Article  Google Scholar 

  8. Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, Vonkeitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35:2526–2533

    Article  Google Scholar 

  9. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effect on soil biota—a review. Soil Biol Biochem 43:1812–1836

    Article  Google Scholar 

  10. Hoekman SK, Broch A, Robbins C, Zielinska B, Felix L (2013) Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks. Biomass Convers Biorefinery 3:113–126

    Article  Google Scholar 

  11. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28(3):435–440

    Article  Google Scholar 

  12. Oliveria L, Blohse D, Ramke HG (2013) Hydrothermal carbonization of agricultural residues. Bioresour Technol 142:133–146

    Google Scholar 

  13. Lehmann J, Downie A, Crosky A, Munroe P (2009) Biochar for environmental management science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  14. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Aust J Soil Res 45(8):629–634

    Article  Google Scholar 

  15. Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  Google Scholar 

  16. Zhao L, Cao X, Masek O, Zimmerman A (2009) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9

    Article  Google Scholar 

  17. Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (biochar). Environ Sci Technol 44(4):1295–1301

    Article  Google Scholar 

  18. Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  Google Scholar 

  19. Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Environ Qual 41(4):990–1000

    Article  Google Scholar 

  20. Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  Google Scholar 

  21. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impacts of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  Google Scholar 

  22. Singh R, Shukla A, Tiwari S, Srivastava M (2014) A review on delignification on lignocellulosic biomass for enhancement of ethanol production potential. Renew Sustain Energy Rev 32:713–728

    Article  Google Scholar 

  23. Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  Google Scholar 

  24. Nanda S, Mohammad J, Reddy SN, Kozinski JA, Dalai AK (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conv Bioref 4:157–191

    Article  Google Scholar 

  25. Mafakheri F, Nasiri F (2014) Modeling of biomass-to-energy supply operations: applications. Chall Res Dir Energy Policy 67:116–126

    Article  Google Scholar 

  26. Lui Z, Balasubramanian R (2012) Hydrothermal carbonization of waste biomass for energy generation. Procedia Environ Sci 16:159–166

    Article  Google Scholar 

  27. Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical structural and combustion characteristics of carbonization of palm empty fruits bunches. Bioresour Technol 135:683–689

    Article  Google Scholar 

  28. Guo YP, Rockstraw DA (2007) Activated carbons prepared from rice hull by one-step phosphoric activation. Microporous Mesoporous Matter 100:12–19

    Article  Google Scholar 

  29. Gaskin JW, Stener C, Haris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans Asabe 51(6):2061–2069

    Article  Google Scholar 

  30. Lee Y, Park J, Ryu C, Gang KS, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of Biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour Technol 148:196–201

    Article  Google Scholar 

  31. Wang Y, Wang L, Fang GD, Herath HMSK, Cang L, Xie Z, Zhou D (2013) Enhanced PCBs sorption on biochars as affected by environmental factors: humic acid and metal cations. Environ Pollut 172:86–93

    Article  Google Scholar 

  32. ISO 1928 Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method, and calculation of net calorific value

  33. Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Aust J Soil Res 48:516–525

    Article  Google Scholar 

  34. Abdullah H, Wu H (2009) Biochar as a Fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuel 23:4174–4181

    Article  Google Scholar 

  35. Yan W, Jason T, Tapas C, Acharjee, Charles J, Coronella, Vaquez VR (2010) Mass and energy balance of wet torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742

  36. Rouquerol F, Rouquerol I, Sing K (1999) Adsorption by powders and porous solids. Academic Press, London, p 13

  37. Theis JK, Rilling MC (2009) Characteristics of biochar, biological properties, biochar for environmental management sciences and technology. Earthscan, London, p 85

  38. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of Lignocellulosic biomass. Energy Fuel 25:1802–1810

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by Korea Ministry of Environment (MOE) as “The Eco-Innovation 21 project (2013000150004)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai-Young Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saqib, N.U., Oh, M., Jo, W. et al. Conversion of dry leaves into hydrochar through hydrothermal carbonization (HTC). J Mater Cycles Waste Manag 19, 111–117 (2017). https://doi.org/10.1007/s10163-015-0371-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0371-1

Keywords

Navigation