Skip to main content
Log in

Effect of Selective Carboplatin-Induced Inner Hair Cell Loss on Temporal Integration in Chinchillas

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Integration of acoustic information over time is essential for processing complex stimuli, such as speech, due to its continuous variability along the time domain. In both humans and animals, perception of acoustic stimuli is a function of both stimulus intensity and duration. For brief acoustic stimuli, as duration increases, thresholds decrease by approximately 3 dB for every doubling in duration until stimulus duration reaches 500 ms, a phenomenon known as temporal integration. Although hearing loss and damage to outer hair cells (OHC) have been shown to alter temporal integration in some studies, the role of cochlear inner hair cells (IHC) on temporal integration is unknown. Because IHC transmit nearly all acoustic information to the central auditory system and are believed to code both intensity and timing information, these sensory cells likely play a critical role in temporal integration. To test the hypothesis that selective IHC loss degrades the temporal integration function, behaviorally trained chinchillas were treated with carboplatin, a drug known to selectively destroy IHC with little to no effect on OHC in this species. Pure-tone thresholds were assessed across frequencies (1, 2, 4, 8, 12 kHz) as a function of signal duration (500, 100, 50, 10, and 5 ms). Baseline testing showed a significant effect of duration on thresholds. Threshold decreased as a function of increasing duration, as expected. Carboplatin treatment (75 mg/kg) produced a moderate to severe loss of IHC (45–85%) with little-to-no loss of OHC. Contrary to our hypothesis, post-carboplatin temporal integration thresholds showed no significant differences from baseline regardless of stimulus duration or frequency. These data suggest that few IHC are necessary for temporal integration of simple stimuli. Temporal integration may be sensitive to loss of OHC and loss of cochlear non-linearities but does not appear to be sensitive to selective IHC loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ANF,:

Auditory nerve fibers

CL:

Cochlear hearing loss

dB:

Decibel

IHC:

Inner hair cell

NH:

Normal hearing

OHC:

Outer hair cell

SPL:

Sound pressure level

References

  • Allen JB (1980) Cochlear micromechanics–a physical model of transduction. J Acoust Soc Am 68:1660–1670

    Article  CAS  PubMed  Google Scholar 

  • Badri R, Siegel JH, Wright BA (2011) Auditory filter shapes and high-frequency hearing in adults who have impaired speech in noise performance despite clinically normal audiograms. J Acoust Soc Am 129:852–863

    Article  PubMed  PubMed Central  Google Scholar 

  • Blakeslee EA, Hynson K, Hamernik RP, Henderson D (1978) Asymptotic threshold shift in chinchillas exposed to impulse noise. J Acoust Soc Am 63:876–882

    Article  CAS  PubMed  Google Scholar 

  • Borg E (1987) Loss of hair cells and threshold sensitivity during prolonged noise exposure in normotensive albino rats. Hear Res 30:119–126

    Article  CAS  PubMed  Google Scholar 

  • Buus S, Florentine M, Poulsen T (1999) Temporal integration of loudness in listeners with hearing losses of primarily cochlear origin. J Acoust Soc Am 105:3464–3480

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Buus S, Florentine M (1990) Temporal integration of trains of tone pulses by normal and by cochlearly impaired listeners. J Acoust Soc Am 87:260–268

    Article  CAS  PubMed  Google Scholar 

  • Chiu F, Rakusen LL, Mattys SL (2019) Cognitive load elevates discrimination thresholds of duration, intensity, and f0 for a synthesized vowel. J Acoust Soc Am 146:1077

    Article  PubMed  Google Scholar 

  • Chung DY (1981) Tone-on-tone masking in subjects with normal hearing and with sensorineural hearing loss. J Speech Hear Res 24:506–513

    Article  CAS  PubMed  Google Scholar 

  • Cody AR, Russell IJ (1985) Outer hair cells in the mammalian cochlea and noise-induced hearing loss. Nature 315:662–665

    Article  CAS  PubMed  Google Scholar 

  • Dallos PJ, Johnson KR (1966) Influence of rise-fall time upon short-tone threshold. J Acoust Soc Am 40:1160–1163

    Article  CAS  PubMed  Google Scholar 

  • Davis B, Qiu W, Hamernik RP (2005) Sensitivity of distortion product otoacoustic emissions in noise-exposed chinchillas. J Am Acad Audiol 16:69–78

    Article  PubMed  Google Scholar 

  • Davis RI, Ahroon WA, Hamernik RP (1989) The relation among hearing loss, sensory cell loss and tuning characteristics in the chinchilla. Hear Res 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • DeFilippo CL, Snell KB (1986) Detection of a temporal gap in low-frequency narrow-band signals by normal-hearing and hearing-impaired listeners. J Acoust Soc Am 80:1354–1358

    Article  CAS  PubMed  Google Scholar 

  • Eddins AC, Salvi RJ, Wang J, Powers NL (1998) Threshold-duration functions of chinchilla auditory nerve fibers. Hear Res 124:190

    Article  CAS  PubMed  Google Scholar 

  • Elliott LL (1975) Temporal and masking phenomena in persons with sensorineural hearing loss. Audiology: official organ of the Int Soc Audio14:336–353

  • Fettiplace R, Fuchs PA (1999) Mechanisms of hair cell tuning. Annu Rev Physiol 61:809–834

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am 72:761–765

    Article  CAS  PubMed  Google Scholar 

  • Florentine M, Buus S (1984) Temporal gap detection in sensorineural and simulated hearing impairments. J Speech Hear Res 27:449–455

    Article  CAS  PubMed  Google Scholar 

  • Florentine M, Fastl H, Buus S (1988) Temporal integration in normal hearing, cochlear impairment, and impairment simulated by masking. J Acoust Soc Am 84:195–203

    Article  CAS  PubMed  Google Scholar 

  • Gengel RW, Watson CS (1971) Temporal integration. I. Clinical implications of a laboratory study. II. Additional data from hearing-impaired subjects. J Speech Hear Disord 36:213–224

    Article  CAS  PubMed  Google Scholar 

  • Gerken GM, Bhat VK, Hutchison-Clutter M (1990) Auditory temporal integration and the power function model. J Acoust Soc Am 88:767–778

    Article  CAS  PubMed  Google Scholar 

  • Giraudi-Perry DM, Salvi RJ, Henderson D (1982) Gap detection in hearing-impaired chinchillas. J Acoust Soc Am 72:1387–1393

    Article  CAS  PubMed  Google Scholar 

  • Giraudi D, Salvi R, Henderson D, Hamernik R (1980) Gap detection by the chinchilla. J Acoust Soc Am 68:802–806

    Article  CAS  PubMed  Google Scholar 

  • Gleich O, Kittel MC, Klump GM, Strutz J (2007) Temporal integration in the gerbil: the effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises. Hear Res 224:101–114

    Article  PubMed  Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ (2001) Sources of age-related recognition difficulty for time-compressed speech. Journal of Speech, Language, and Hearing Research : JSLHR 44:709–719

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Salant S, Fitzgibbons PJ, Friedman SA (2007) Recognition of time-compressed and natural speech with selective temporal enhancements by young and elderly listeners. Journal of Speech, Language, and Hearing Research : JSLHR 50:1181–1193

    Article  PubMed  Google Scholar 

  • Gorga MP, Beauchaine KA, Reiland JK, Worthington DW, Javel E (1984) The effects of stimulus duration on ABR and behavioral thresholds. J Acoust Soc Am 76:616–619

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Eddins DA, Hall JW 3rd (1989) Gap detection as a function of stimulus bandwidth with fixed high-frequency cutoff in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 86:1747–1755

    Article  CAS  PubMed  Google Scholar 

  • Hall JW, Fernandes MA (1983) Temporal integration, frequency resolution, and off-frequency listening in normal-hearing and cochlear-impaired listeners. J Acoust Soc Am 74:1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Hamernik RP, Patterson JH, Turrentine GA, Ahroon WA (1989) The quantitative relation between sensory cell loss and hearing thresholds. Hear Res 38:199–211

    Article  CAS  PubMed  Google Scholar 

  • Henderson D (1969) Temporal summation of acoustic signals by the chinchilla. J Acoust Soc Am 46:474–475

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter P, Ding D, Salvi R (1997a) Magnitude and pattern of inner and outer hair cell loss in chinchilla as a function of carboplatin dose. Audiology 36:301–311

    Article  CAS  PubMed  Google Scholar 

  • Hofstetter P, Ding D, Powers N, Salvi RJ (1997b) Quantitative relationship of carboplatin dose to magnitude of inner and outer hair cell loss and the reduction in distortion product otoacoustic emission amplitude in chinchillas. Hear Res 112:199–215

    Article  CAS  PubMed  Google Scholar 

  • Janesick A, Scheibinger M, Benkafadar N, Kirti S, Ellwanger DC, Heller S (2021) Cell-type identity of the avian cochlea. Cell Rep 34:108900

  • Johnstone BM, Patuzzi R, Yates GK (1986) Basilar membrane measurements and the travelling wave. Hear Res 22:147–153

    Article  CAS  PubMed  Google Scholar 

  • King KA, Gordon-Salant S, Pawlowski KS, Taylor AM, Griffith AJ, Houser A, Kurima K, Wassif CA, Wright CG, Porter FD, Repa JJ, Brewer CC (2014) Hearing loss is an early consequence of Npc1 gene deletion in the mouse model of Niemann-Pick disease, type C. Journal of the Association for Research in Otolaryngology : JARO 15:529–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after "temporary" noiseinduced hearing loss. The Journal of neuroscience: the official journal of the Society for Neuroscience 29:14077–14085

  • Lauer AM, Dooling RJ, Leek MR, Poling K (2007) Detection and discrimination of simple and complex sounds by hearing-impaired Belgian Waterslager canaries. J Acoust Soc Am 122:3615–3627

    Article  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2013) Insensitivity of the audiogram to carboplatin induced inner hair cell loss in chinchillas. Hear Res 302:113–120

    Article  CAS  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2016) Selective inner hair cell dysfunction in chinchillas impairs hearing-in-noise in the absence of outer hair cell loss. Journal of the Association for Research in Otolaryngology : JARO 17:89–101

    Article  PubMed  Google Scholar 

  • Lobarinas E, Salvi R, Ding D (2020) Gap detection deficits in chinchillas with selective carboplatin-induced inner hair cell loss. J Assoc Res Otolaryngol: JARO 21(6):475–483

  • Manheim M, Lavie L, Banai K (2018) Age, hearing, and the perceptual learning of rapid speech. Trends Hear 22:2331216518778651

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden SL, Ding D, Jiang H, Woo JM, Salvi RJ (2002) Chinchilla models of selective cochlear hair cell loss. Hear Res 174:230–238

    Article  PubMed  Google Scholar 

  • Middelweerd MJ, Festen JM, Plomp R (1990) Difficulties with speech intelligibility in noise in spite of a normal pure-tone audiogram. Audiology: official organ of the Int Soc Audio 29:1–7

  • Moore BC, Peters RW, Glasberg BR (1992) Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. J Acoust Soc Am 92:1923–1932

    Article  CAS  PubMed  Google Scholar 

  • Moore BC, Peters RW, Glasberg BR (1999) Effects of frequency and duration on psychometric functions for detection of increments and decrements in sinusoids in noise. J Acoust Soc Am 106:3539–3552

    Article  CAS  PubMed  Google Scholar 

  • Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193

    Article  PubMed  Google Scholar 

  • Neubauer H, Heil P (2004) Towards a unifying basis of auditory thresholds: the effects of hearing loss on temporal integration reconsidered. Journal of the Association for Research in Otolaryngology : JARO 5:436–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxenham AJ, Moore BC, Vickers DA (1997) Short-term temporal integration: evidence for the influence of peripheral compression. J Acoust Soc Am 101:3676–3687

  • Palandrani KN, Hoover EC, Stavropoulos T, Seitz AR, Isarangura S, Gallun FJ, Eddins DA (2021) Temporal integration of monaural and dichotic frequency modulation. J Acoust Soc Am 150:745

    Article  PubMed  PubMed Central  Google Scholar 

  • Patuzzi RB, Yates GK, Johnstone BM (1989) Outer hair cell receptor current and sensorineural hearing loss. Hear Res 42:47–72

    Article  CAS  PubMed  Google Scholar 

  • Pawlowski K, Koulich E, Wright CG, Roland P (2013) Ototopic applications of povidone iodine/dexamethasone in the rat. Otology & neurotology : official publication of the American Otological Society, Am Neurotol Soc Eur Academy Otol Neurotol 34:167–174

  • Pedersen CB, Salomon G (1977) Temporal integration of acoustic energy. Acta Otolaryngol 83:417–423

    Article  CAS  PubMed  Google Scholar 

  • Preyer S, Gummer AW (1996) Nonlinearity of mechanoelectrical transduction of outer hair cells as the source of nonlinear basilar-membrane motion and loudness recruitment. Audiol Neurootol 1:3–11

    Article  CAS  PubMed  Google Scholar 

  • Reed CM, Braida LD, Zurek PM (2009) Review article: review of the literature on temporal resolution in listeners with cochlear hearing impairment: a critical assessment of the role of suprathreshold deficits. Trends Amplif 13:4–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvi RJ, Arehole S (1985) Gap detection in chinchillas with temporary high-frequency hearing loss. J Acoust Soc Am 77:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • Salvi RJ, Hamernik RP, Henderson D (1978) Discharge patterns in the cochlear nucleus of the chinchilla following noise induced asymptotic threshold shift. Exp Brain Res 32:301–320

    Article  CAS  PubMed  Google Scholar 

  • Saunders SS, Salvi RJ, Miller KM (1995) Recovery of thresholds and temporal integration in adult chickens after high-level 525-Hz pure-tone exposure. J Acoust Soc Am 97:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Solecki JM, Gerken GM (1990) Auditory temporal integration in the normal-hearing and hearing-impaired cat. J Acoust Soc Am 88:779–785

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Shen P, Li X, Shi L, Liu L, Wang J, Yu Z, Stephen K, Aiken S, Yin S, Wang J (2016) Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Scientific reports 6:25200

  • Spoendlin H (1975) Neuroanatomical basis of cochlear coding mechanisms. Audiology 14:383–407

    Article  CAS  PubMed  Google Scholar 

  • Stephens SD (1973) Auditory temporal integration as a function of intensity. J Sound Vib 30:109–126

    Article  Google Scholar 

  • Takeno S, Harrison RV, Ibrahim D, Wake M, Mount RJ (1994a) Cochlear function after selective inner hair cell degeneration induced by carboplatin. Hear Res 75:93–102

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Harrison RV, Mount RJ, Wake M, Harada Y (1994b) Induction of selective inner hair cell damage by carboplatin. Scanning Microsc 8:97–106

    CAS  PubMed  Google Scholar 

  • Thibodeau LM (1996) Evaluation of auditory enhancement and auditory suppression in listeners with normal hearing and reduced speech recognition in noise. J Speech Hear Res 39:947–956

    Article  CAS  PubMed  Google Scholar 

  • Trautwein P, Hofstetter P, Wang J, Salvi R, Nostrant A (1996) Selective inner hair cell loss does not alter distortion product otoacoustic emissions. Hear Res 96:71–82

    Article  CAS  PubMed  Google Scholar 

  • Trevino M, Lobarinas E, Maulden AC, Heinz MG (2019) The chinchilla animal model for hearing science and noise-induced hearing loss. J Acoust Soc Am 146:3710

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner CW, Robb MP (1987) Audibility and recognition of stop consonants in normal and hearing-impaired subjects. J Acoust Soc Am 81:1566–1573

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865

    Article  CAS  PubMed  Google Scholar 

  • Wake M, Takeno S, Ibrahim D, Harrison R (1994) Selective inner hair cell ototoxicity induced by carboplatin. Laryngoscope 104:488–493

    CAS  PubMed  Google Scholar 

  • Walden BE, Schwartz DM, Montgomery AA, Prosek RA (1981) A comparison of the effects of hearing impairment and acoustic filtering on consonant recognition. J Speech Hear Res 24:32–43

    Article  CAS  PubMed  Google Scholar 

  • Watson CS, Gengel RW (1969) Signal duration and signal frequency in relation to auditory sesitivity. J Acoust Soc Am 46:989–997

    Article  CAS  PubMed  Google Scholar 

  • Wever EG, Bray CW (1930) Auditory nerve impulses. Science 71:215

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data collection and writing of the manuscript.

Corresponding author

Correspondence to Edward Lobarinas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevino, M., Escabi, C.D., Zang, A. et al. Effect of Selective Carboplatin-Induced Inner Hair Cell Loss on Temporal Integration in Chinchillas. JARO 23, 379–389 (2022). https://doi.org/10.1007/s10162-022-00843-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00843-5

Keywords

Navigation