Skip to main content

Advertisement

Log in

Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Acoustic trauma damages the cochlea but secondarily modifies circuits of the central auditory system. Changes include decreases in inhibitory neurotransmitter systems, degeneration and rewiring of synaptic circuits, and changes in neural activity. Little is known about the consequences of these changes for the representation of complex sounds. Here, we show data from the dorsal cochlear nucleus (DCN) of rats with a moderate high-frequency hearing loss following acoustic trauma. Single-neuron recording was used to estimate the organization of neurons’ receptive fields, the balance of inhibition and excitation, and the representation of the spectra of complex broadband stimuli. The complex stimuli had random spectral shapes (RSSs), and the responses were fit with a model that allows the quality of the representation and its degree of linearity to be estimated. Tone response maps of DCN neurons in rat are like those in other species investigated previously, suggesting the same general organization of this nucleus. Following acoustic trauma, abnormal response types appeared. These can be interpreted as reflecting degraded tuning in auditory nerve fibers plus loss of inhibitory inputs in DCN. Abnormal types are somewhat more prevalent at later times (103–376 days) following the exposure, but not significantly so. Inhibition became weaker in post-trauma neurons that retained inhibitory responses but also disappeared in many neurons. The quality of the representation of spectral shape, measured by sensitivity to the spectral shapes of RSS stimuli, was decreased following trauma; in fact, neurons with abnormal response types responded mainly to overall stimulus level, and not spectral shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asako M, Holt AG, Griffith RD, Buras ED, Altschuler RA (2005) Deafness-related decreases in glycine-immunoreactive labeling in the rat cochlear nucleus. J Neurosci Res 81:102–109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandyopadhyay S, Young ED, Reiss LAJ (2007) Spectral edges as optimal stimuli for the dorsal cochlear nucleus. In: Kollmeier B, Klump G, Hohmann V, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds) Hearing—from sensory processing to perception. Springer, Berlin, pp 43–50

    Chapter  Google Scholar 

  • Barker M, Solinski HJ, Hashimoto H, Tagoe T, Pilati N, Hamann M (2012) Acoustic overexposure increases the expression of VGLUT-2 mediated projections from the lateral vestibular nucleus to the dorsal cochlear nucleus. PLoS One 7, e35955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Browne CJ, Morley JW, Parsons CH (2012) Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS One 7, e33272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390

    CAS  PubMed  Google Scholar 

  • Brozoski TJ, Wisner KW, Odintsov B, Bauer CA (2013) Local NMDA receptor blockade attenuates chronic tinnitus and associated brain activity in an animal model. PLoS One 8, e77674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai S, Ma W-LD, Young ED (2009) Encoding intensity in ventral cochlear nucleus following acoustic trauma: implications for loudness recruitment. J Assoc Res Otolaryngol 10:5–22

    Article  PubMed Central  PubMed  Google Scholar 

  • Caspary DM, Pazara KE, Kossl M, Faingold CL (1987) Strychnine alters the fusiform cell output from the dorsal cochlear nucleus. Brain Res 417:273–282

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 23:10952–10959

    Article  Google Scholar 

  • Davis KA, Young ED (2000) Pharmacological evidence of inhibitory and disinhibitory neural circuits in dorsal cochlear nucleus. J Neurophysiol 83:926–940

    CAS  PubMed  Google Scholar 

  • Dehmel S, Pradhan S, Koehler S, Bledsoe SC, Shore SE (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity. J Neurosci 32:1660–1671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Du X, Chen K, Choi CH, Li W, Cheng W, Stewart C, Hu N, Floyd RA, Kopke RD (2012) Selective degeneration of synapses in the dorsal cochlear nucleus of chinchilla following acoustic trauma and effects of antioxidant treatment. Hearing Res 283:1–13

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Eggermont JJ, Roberts LE (2014) Tinnitus: animal models and findings in humans. Cell Tissue Res 1–26

  • Evans EF, Nelson PG (1973) The responses of single neurons in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Exp Brain Res 17:402–427

    CAS  PubMed  Google Scholar 

  • Finlayson PG, Kaltenbach JA (2009) Alterations in the spontaneous discharge patterns of single units in the dorsal cochlear nucleus following intense sound exposure. Hearing Res 256:104–117

    Article  Google Scholar 

  • Godfrey DA, Kiang NYS, Norris BE (1975) Single unit activity in the dorsal cochlear nucleus of the cat. J Comp Neurol 162:269–284

    Article  CAS  PubMed  Google Scholar 

  • Gold JR, Bajo VM (2014) Insult-induced adaptive plasticity of the auditory system. Front Neurosci 8:110

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaltenbach JA, Czaja JM, Kaplan CR (1992) Changes in the tonotopic map of the dorsal cochlear nucleus following induction of cochlear lesions by exposure to intense sound. Hearing Res 59:213–223

    Article  CAS  Google Scholar 

  • Kaltenbach JA, Zhang J, Finlayson PG (2005) Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hearing Res 206:200–226

    Article  Google Scholar 

  • Kim JJ, Gross JS, Morest DK, Potashner SJ (2004) Quantitative study of degeneration and new growth of axons and dsynaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J Neurosci Res 77:829–842

    Article  CAS  PubMed  Google Scholar 

  • Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol 186:443–465

    Article  CAS  PubMed  Google Scholar 

  • Kou ZZ, Qu J, Zhang DL, Li H, Li YQ (2013) Noise-induced hearing loss is correlated with alterations in the expression of GABAB receptors and PKC gamma in the murine cochlear nucleus complex. Front Neuroanat 7:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman AM (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Res 16:55–74

    Article  CAS  Google Scholar 

  • Ma W-L, Young ED (2006) Dorsal cochlear nucleus response properties following acoustic trauma: response maps and spontaneous activity. Hearing Res 216–217:176–188

    Article  Google Scholar 

  • Middleton JW, Kiritani T, Pedersen C, Turner JG, Shepherd GM, Tzounopoulos T (2011) Mice with behavioral evidence of tinnitus exhibit dorsal cochlear nucleus hyperactivity because of decreased GABAergic inhibition. Proc Natl Acad Sci U S A 108:7601–7606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller RL, Schilling JR, Franck KR, Young ED (1997) Effects of acoustic trauma on the representation of the vowel /e/ in cat auditory nerve fibers. J Acoust Soc Am 101:3602–3616

    Article  CAS  PubMed  Google Scholar 

  • Mossop JE, Wilson MJ, Caspary DM, Moore DR (2000) Down-regulation of inhibition following unilateral deafening. Hearing Res 147:183–187

    Article  CAS  Google Scholar 

  • Nelken I, Young ED (1997) Linear and non-linear spectral integration in type IV neurons of the dorsal cochlear nucleus: I. Regions of linear interaction. J Neurophysiol 78:790–799

    CAS  PubMed  Google Scholar 

  • Nelken I, Kim PJ, Young ED (1997) Linear and non-linear spectral integration in type IV neurons of the dorsal cochlear nucleus: II. Predicting responses using non-linear methods. J Neurophysiol 78:800–811

    CAS  PubMed  Google Scholar 

  • Ngan EM, May BJ (2001) Relationship between the auditory brainstem response and auditory nerve thresholds in cats with hearing loss. Hearing Res 156:44–52

    Article  CAS  Google Scholar 

  • Parsons JE, Lim E, Voigt HF (2001) Type III units in the gerbil dorsal cochlear nucleus may be spectral notch detectors. Ann Biomed Eng 29:887–896

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, Maatthias J, Hamann M (2012) Mechanisms contributing to central excitability changes during hearing loss. Proc Natl Acad Sci U S A 109:8292–8297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  • Reiss LAJ, Young ED (2005) Spectral edge sensitivity in neural circuits of the dorsal cochlear nucleus. J Neurosci 25:3680–3691

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS (1999) Vertical cell responses to sound in cat dorsal cochlear nucleus. J Neurophysiol 82:1019–1032

    CAS  PubMed  Google Scholar 

  • Rhode WS, Kettner RE (1987) Physiological studies of neurons in the dorsal and posteroventral cochlear nucleus of the unanesthetized cat. J Neurophysiol 57:414–442

    CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH, Oertel D (1983) Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus. J Comp Neurol 213:426–447

    Article  CAS  PubMed  Google Scholar 

  • Ropp TJ, Tiedemann KL, Young ED, May BJ (2014) Effects of unilateral acoustic trauma on tinnitus-related spontaneous activity in the inferior colliculus. JARO 15:1007–1022

    Article  PubMed  Google Scholar 

  • Saint Marie RL, Benson CG, Ostapoff EM, Morest DK (1991) Glycine immunoreactive projections from the dorsal to the anteroventral cochlear nucleus. Hearing Res 51:11–28

    Article  CAS  Google Scholar 

  • Sanz-Fernández R, Sánchez-Rodriguez C, Granizo JJ, Durio-Calero E, Martín-Sanz E (2015) Utility of auditory steady-state and brainstem responses in age-related hearing loss in rats. Acta Oto-Laryngol 135:35–41

    Article  Google Scholar 

  • Schatteman TA, Hughes LF, Caspary DM (2008) Aged-related loss of temporal processing: altered responses to amplitude modulated tones in rat dorsal cochlear nucleus. Neuroscience 154:329–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shofner WP, Young ED (1985) Excitatory/inhibitory response types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J Neurophysiol 54:917–939

    CAS  PubMed  Google Scholar 

  • Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci 27:155–168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spirou GA, Davis KA, Nelken I, Young ED (1999) Spectral integration by type II interneurons in dorsal cochlear nucleus. J Neurophysiol 82:648–663

    CAS  PubMed  Google Scholar 

  • Syka J (2002) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 82:601–636

    PubMed  Google Scholar 

  • Tagoe T, Barker M, Jones A, Allcock N, Hamann M (2014) Auditory nerve perinodal dysmyelination in noise-induced hearing loss. J Neurosci 34:2684–2688

    Article  CAS  PubMed  Google Scholar 

  • Tzounopoulos T, Rubio ME, Keen JE, Trussell LO (2007) Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 54:291–301

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vale C, Sanes DH (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J Neurosci 16:2394–2404

    Article  PubMed  Google Scholar 

  • Voigt HF, Young ED (1990) Cross-correlation analysis of inhibitory interactions in dorsal cochlear nucleus. J Neurophysiol 64:1590–1610

    CAS  PubMed  Google Scholar 

  • Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whiting B, Moiseff A, Rubio ME (2009) Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience 163:1264–1276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xie R, Manis PB (2013) Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss. J Neurophysiol 110:1848–1859

    Article  PubMed Central  PubMed  Google Scholar 

  • Young ED (1980) Identification of response properties of ascending axons from dorsal cochlear nucleus. Brain Res 200:23–38

    Article  CAS  PubMed  Google Scholar 

  • Young ED (2011) Neural coding of sound with cochlear damage. In: Le Prell C, Henderson D, Fay RR, Popper AN (eds) Noise-induced hearing loss: scientific advances. Springer, New York, pp 87–135

    Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39:282–300

    CAS  PubMed  Google Scholar 

  • Young ED, Calhoun BM (2005) Nonlinear modeling of auditory-nerve rate responses to wideband stimuli. J Neurophysiol 94:4441–4454

    Article  PubMed  Google Scholar 

  • Young ED, Davis KA (2001) Circuitry and function of the dorsal cochlear nucleus. In: Oertel D, Popper AN, Fay RR (eds) Integrative functions in the mammalian auditory pathway. Springer Verlag, New York, pp 160–206

    Google Scholar 

  • Young ED, Yu JJ, Reiss LA (2005) Non-linearities and the representation of auditory spectra. Int Rev Neurobiol 70:135–168

    Article  PubMed  Google Scholar 

  • Yu JJ, Young ED (2000) Linear and nonlinear pathways of spectral information transmission in the cochlear nucleus. Proc Natl Acad Sci U S A 97:11780–11786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JJ, Young ED (2013) Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction. Front Neural Circuits 7:90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng C, Yang Z, Shreve L, Bledsoe SC, Shore SE (2012) Somatosensory projections to cochlear nucleus are upregulated after unilateral deafness. J Neurosci 32:15791–15801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JS, Kaltenbach JA (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Tao HW, Zhang LI (2012) Generation of intensity selectivity by differential synaptic tuning: fast-saturating excitation but slow-saturating inhibition. J Neurosci 32:18068–18078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou M, Li Y-T, Yuan W, Tao HW, Zhang LI (2015) Synaptic mechanisms for generating temporal diversity of auditory representation in the dorsal cochlear nucleus. J Neurophysiol 113(5):1358–1368

Download references

Acknowledgments

Thanks are due to Troy Rubin for help with recording procedures, Qian Gao for programming and other assistance with computing, Ron Atkinson for electronics support, Kerrie Tiedemann for assistance with animals, and Phyllis Taylor for technical assistance. The work was supported by grants from the National Institute on Deafness and Other Communication Disorders RC1-DC010594, R01-DC000115, and P30-DC005211.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ropp, TJ.F., May, B.J. et al. Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma. JARO 16, 487–505 (2015). https://doi.org/10.1007/s10162-015-0522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0522-z

Keywords

Navigation