Skip to main content

Afferent Coding and Efferent Control in the Normal and Impaired Cochlea

  • Chapter
  • First Online:
Understanding the Cochlea

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 62))

Abstract

The auditory nerve is the neural transmission channel linking the cochlea and brainstem. After spectral decomposition of acoustic signals along the basilar membrane, afferent fibers convey information to the cochlear nucleus with astounding temporal precision, whereas efferent fibers form part of a negative-feedback control circuit thought to modulate the gain of cochlear signal transduction. Single-fiber spike-based neurophysiological recording in the auditory nerve continues to offer invaluable insights on cochlear mechanics and peripheral neural coding of sounds. Much has been learned over the past two decades regarding the effects of cochlear damage on coding and the relationship between neurophysiological and perceptual phenomena in audition. Here, a conceptual review of auditory nerve physiology in normal and impaired hearing is presented, including both afferent and efferent functions. Important historical foundations are covered as well as the most recent and exciting developments. The aim is to link neurophysiological findings with their perceptual counterparts wherever possible and to provide the reader a framework in which to understand the neural underpinnings of the everyday perceptual difficulties faced by hearing-impaired listeners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur, R. M., Pfeiffer, R. R., & Suga, N. (1971). Properties of “two-tone inhibition” in primary auditory neurones. The Journal of Physiology, 212(3), 593–609.

    Google Scholar 

  • Baguley, D. M. (2003). Hyperacusis. Journal of the Royal Society of Medicine, 96(12), 582–585.

    Google Scholar 

  • Benson, T. E., & Brown, M. C. (2004). Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. Journal of the Association for Research in Otolaryngology, 5(2), 111–125.

    Google Scholar 

  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. The Journal of Neuroscience, 35(5), 2161–2172.

    Google Scholar 

  • Bohne, B. A., Bozzay, D. G., & Harding, G. W. (1986). Interaural correlations in normal and traumatized cochleas: Length and sensory cell loss. The Journal of the Acoustical Society of America, 80(6), 1729–1736.

    Google Scholar 

  • Bregman, A. S. (1990). Auditory Scene Analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brokx, J. P. L., & Nooteboom, S. G. (1982). Intonation and the perceptual separation of simultaneous voices. Journal of Phonetics, 10(1), 23–36.

    Google Scholar 

  • Brown, M. C. (1987). Morphology of labeled afferent fibers in the guinea pig cochlea. The Journal of Comparative Neurology, 260(4), 591–604.

    Google Scholar 

  • Brown, M. C. (2014). Single-unit labeling of medial olivocochlear neurons: The cochlear frequency map for efferent axons. Journal of Neurophysiology, 111(11), 2177–2186.

    Google Scholar 

  • Brown, M. C. (2016). Recording and labeling at a site along the cochlea shows alignment of medial olivocochlear and auditory nerve tonotopic mappings. Journal of Neurophysiology, 115(3), 1644–1653.

    Google Scholar 

  • Bruce, I. C., Sachs, M. B., & Young, E. D. (2003). An auditory-periphery model of the effects of acoustic trauma on auditory nerve responses. The Journal of the Acoustical Society of America, 113(1), 369–388.

    Google Scholar 

  • Cai, S., Ma, W.-L. D., & Young, E. D. (2009). Encoding intensity in ventral cochlear nucleus following acoustic trauma: Implications for loudness recruitment. Journal of the Association for Research in Otolaryngology, 10(1), 5–22.

    Google Scholar 

  • Carney, L. H. (1993). A model for the responses of low-frequency auditory-nerve fibers in cat. The Journal of the Acoustical Society of America, 93, 401–417.

    Google Scholar 

  • Carney, L. H. (1994). Spatiotemporal encoding of sound level: Models for normal encoding and recruitment of loudness. Hearing Research, 76(1–2), 31–44.

    Google Scholar 

  • Carney, L. H., Heinz, M. G., Evilsizer, M. E., Gilkey, R. H., & Colburn, H. S. (2002). Auditory phase opponency: A temporal model for masked detection at low frequencies. Acta Acustica united with Acustica, 88, 334–347.

    Google Scholar 

  • Cody, A. R., & Robertson, D. (1983). Variability of noise-induced damage in the guinea pig cochlea: Electrophysiological and morphological correlates after strictly controlled exposures. Hearing Research, 9(1), 55–70.

    Google Scholar 

  • Colburn, H. S., Carney, L. H., & Heinz, M. G. (2003). Quantifying the information in auditory-nerve responses for level discrimination. Journal of the Association for Research in Otolaryngology, 4, 294–311.

    Google Scholar 

  • Costalupes, J. A., Young, E. D., & Gibson, D. J. (1984). Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. Journal of Neurophysiology, 51(6), 1326–1344.

    Google Scholar 

  • Dallos, P., Popper, A. N., & Fay, R. R. (Eds.). (1996). The Cochlea. New York: Springer-Verlag.

    Google Scholar 

  • Darrow, K. N., Maison, S. F., & Liberman, M. C. (2006a). Cochlear efferent feedback balances interaural sensitivity. Nature Neuroscience, 9(12), 1474–1476.

    Google Scholar 

  • Darrow, K. N., Simons, E. J., Dodds, L., & Liberman, M. C. (2006b). Dopaminergic innervation of the mouse inner ear: Evidence for a separate cytochemical group of cochlear efferent fibers. The Journal of Comparative Neurology, 498(3), 403–414.

    Google Scholar 

  • Darrow, K. N., Maison, S. F., & Liberman, M. C. (2007). Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury. Journal of Neurophysiology, 97(2), 1775–1785.

    Google Scholar 

  • Dean, I., Harper, N. S., & McAlpine, D. (2005). Neural population coding of sound level adapts to stimulus statistics. Nature Neuroscience, 8(12), 1684–1689.

    Google Scholar 

  • de Boer, E., & de Jongh, H. R. (1978). On cochlear encoding: potentialities and limitations of the reverse‐correlation technique. The Journal of the Acoustical Society of America, 63(1), 115–135.

    Google Scholar 

  • de Cheveigné, A. (1993). Separation of concurrent harmonic sounds: Fundamental frequency estimation and a time-domain cancellation model of auditory processing. The Journal of the Acoustical Society of America, 93(6), 3271–3290.

    Google Scholar 

  • Delano, P. H., Elgueda, D., Hamame, C. M., & Robles, L. (2007). Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. The Journal of Neuroscience, 27(15), 4146–4153.

    Google Scholar 

  • Delgutte, B. (1987). Peripheral auditory processing of speech information: Implications from a physiological study of intensity discrimination. In M. E. H. Schouten (Ed.), The Psychophysics of Speech Perception (pp. 333–353). Dordrecht, The Netherlands: Nijhof.

    Google Scholar 

  • Delgutte, B. (1990a). Physiological mechanisms of psychophysical masking: Observations from auditory‐nerve fibers. The Journal of the Acoustical Society of America, 87(2), 791–809.

    Google Scholar 

  • Delgutte, B. (1990b). Two-tone rate suppression in auditory-nerve fibers: Dependence on suppressor frequency and level. Hearing Research, 49(1–3), 225–246.

    Google Scholar 

  • Delgutte, B. (1996). Physiological models for basic auditory percepts. In H. L. Hawkins, T. A. McMullen, A. N. Popper, & R. R. Fay (Eds.), Auditory Computation (pp. 157–220). New York: Springer-Verlag.

    Google Scholar 

  • Delgutte, B., & Kiang, N. Y.-S. (1984a). Speech coding in the auditory nerve. I. Vowel-like sounds. The Journal of the Acoustical Society of America, 75(3), 866–878.

    Google Scholar 

  • Delgutte, B., & Kiang, N. Y.-S. (1984b). Speech coding in the auditory nerve. IV. Sounds with consonant-like dynamic characteristics. The Journal of the Acoustical Society of America, 75(3), 897–907.

    Google Scholar 

  • Delgutte, B., & Kiang, N. Y. S. (1984c). Speech coding in the auditory nerve. V. Vowels in background noise. The Journal of the Acoustical Society of America, 75(3), 908–918.

    Google Scholar 

  • Dewson, J. H. (1968). Efferent olivocochlear bundle: Some relationships to stimulus discrimination in noise. Journal of Neurophysiology, 31(1), 122–130.

    Google Scholar 

  • Duquesnoy, A. J. (1983). Effect of a single interfering noise or speech source upon the binaural sentence intelligibility of aged persons. The Journal of the Acoustical Society of America, 74(3), 739–743.

    Google Scholar 

  • Edwards, B. (2004). Hearing aids and hearing impairment. In S. Greenberg, W. A. Ainsworth, A. N. Popper, & R. R. Fay (Eds.), Speech Processing in the Auditory System (pp. 339–421). New York: Springer-Verlag.

    Google Scholar 

  • Eustaquio-Martín, A., & Lopez-Poveda, E. A. (2011). Isoresponse versus isoinput estimates of cochlear filter tuning. Journal of the Association for Research in Otolaryngology, 12(3), 281–299.

    Google Scholar 

  • Evans, E. F. (2001). Latest comparisons between physiological and behavioural frequency selectivity. In D. J. Breebart, A. J. M. Houtsma, A. Kohlrausch, V. F. Prijs, & R. Schoonhoven (Eds.), Physiological and Psychophysical Bases of Auditory Function (pp. 382–387). Maastricht, The Netherlands: Shaker Publishing BV.

    Google Scholar 

  • Fant, G. (1970). Acoustic Theory of Speech Production. The Hague, The Netherlands: Mouton de Gruyter.

    Google Scholar 

  • Festen, J. M., & Plomp, R. (1990). Effects of fluctuating noise and interfering speech on the speech‐reception threshold for impaired and normal hearing. The Journal of the Acoustical Society of America, 88(4), 1725–1736.

    Google Scholar 

  • Fletcher, H. (1940). Auditory patterns. Review of Modern Physics, 12, 47–65.

    Google Scholar 

  • Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. The Journal of the Acoustical Society of America, 5, 82–108.

    Google Scholar 

  • Fridberger, A., Flock, Å., Ulfendahl, M., & Flock, B. (1998). Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 7127–7132.

    Google Scholar 

  • Froud, K. E., Wong, A. C. Y., Cederholm, J. M. E., Klugmann, M., Sandow, S. L., Julien, J. P., Ryan, A. F., & Housley, G. D. (2015). Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nature Communications, 6, 7115.

    Google Scholar 

  • Fuchs, P. (2002). The synaptic physiology of cochlear hair cells. Audiology and Neurotology, 7(1), 40–44.

    Google Scholar 

  • Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110(3), 577–586.

    Google Scholar 

  • Galambos, R., & Davis, H. (1943). The response of single auditory nerve fibers to acoustic stimulation. Journal of Neurophysiology, 6, 39–57.

    Google Scholar 

  • Geisler, C. D., Yates, G. K., Patuzzi, R. B., & Johnstone, B. M. (1990). Saturation of outer hair cell receptor currents causes two-tone suppression. Hearing Research, 44(2–3), 241–256.

    Google Scholar 

  • Goldberg, J. M., & Brown, P. B. (1969). Responses of binaural neurons in the dog superior olivary complex to dichotic stimuli: Some physiological mechanisms of sound localization. Journal of Neurophysiology, 32, 613–636.

    Google Scholar 

  • Goldstein, J. L. (1974). Is the power law simply related to the driven spike response rate from the whole auditory nerve? In H. R. Moskowitz, B. Scharf, & S. S. Stevens (Eds.), Sensation and Measurement (pp. 223–229). Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Goutman, J. D., & Glowatzki, E. (2007). Time course and calcium dependence of transmitter release at a single ribbon synapse. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16341–16346.

    Google Scholar 

  • Groff, J. A., & Liberman, M. C. (2003). Modulation of cochlear afferent response by the lateral olivocochlear system: Activation via electrical stimulation of the inferior colliculus. Journal of Neurophysiology, 90(5), 3178–3200.

    Google Scholar 

  • Guinan, J. J. (2006). Olivocochlear efferents: Anatomy, physiology, function, and the measurement of efferent effects in humans. Ear and Hearing, 27(6), 589–607.

    Google Scholar 

  • Guinan, J. J. (2013). Physiology and function of cochlear efferents. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 1–11). New York: Springer-Verlag.

    Google Scholar 

  • Guinan, J. J., & Gifford, M. L. (1988). Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. III. Tuning curves and thresholds at CF. Hearing Research, 37(1), 29–45.

    Google Scholar 

  • Harding, G. W., & Bohne, B. A. (2009). Relation of focal hair cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise. Hearing Research, 254(1–2), 54–63.

    Google Scholar 

  • Harris, D. M., & Dallos, P. (1979). Forward masking of auditory nerve fiber responses. Journal of Neurophysiology, 42(4), 1083–1107.

    Google Scholar 

  • Harrison, R. V. (1981). Rate-versus-intensity functions and related AP responses in normal and pathological guinea pig and human cochleas. The Journal of the Acoustical Society of America, 70(4), 1036–1044.

    Google Scholar 

  • Heil, P., & Irvine, D. R. F. (1997). First-spike timing of auditory-nerve fibers and comparison with auditory cortex. Journal of Neurophysiology, 78(5), 2438–2454.

    Google Scholar 

  • Heinz, M. G. (2010). Computational modeling of sensorineural hearing loss. In R. Meddis, E. A. Lopez-Poveda, A. N. Popper, & R. R. Fay (Eds.), Computational Models of the Auditory System (pp. 177–202). New York: Springer US.

    Google Scholar 

  • Heinz, M. G. (2012). Intensity coding throughout the auditory system. In K. L. Tremblay & R. F. Burkard (Eds.), Translational Perspectives in Auditory Neuroscience: Normal Aspects of Hearing (pp. 349–386). San Diego, CA: Plural Publishing.

    Google Scholar 

  • Heinz, M. G. (2016). Neural modelling to relate individual differences in physiological and perceptual responses with sensorineural hearing loss. In S. Santurette, T. Dau, J. C. Dalsgaard, L. Tranebjaerg, T. Andersen, & T. Poulsen (Eds.), Individual Hearing Loss – Characterization, Modelling, Compensation Strategies, International Symposium on Audiological and Auditory Research (ISAAR), Danavox Jubilee Foundation, Nyborg, Denmark, August 23–25, 2017, pp. 137–148.

    Google Scholar 

  • Heinz, M. G., & Young, E. D. (2004). Response growth with sound level in auditory-nerve fibers after noise-induced hearing loss. Journal of Neurophysiology, 91(2), 784–795.

    Google Scholar 

  • Heinz, M. G., & Henry, K. S. (2013). Modeling disrupted tonotopicity of temporal coding following sensorineural hearing loss. Proceedings of Meetings on Acoustics, 19(1), 050177.

    Google Scholar 

  • Heinz, M. G., Colburn, H. S., & Carney, L. H. (2001). Rate and timing cues associated with the cochlear amplifier: Level discrimination based on monaural cross-frequency coincidence detection. The Journal of the Acoustical Society of America, 110(4), 2065–2084.

    Google Scholar 

  • Heinz, M. G., Issa, J. B., & Young, E. D. (2005). Auditory-nerve rate responses are inconsistent with common hypotheses for the neural correlates of loudness recruitment. Journal of the Association for Research in Otolaryngology, 6(2), 91–105.

    Google Scholar 

  • Heinz, M. G., Swaminathan, J., Boley, J. D., & Kale, S. (2010). Across-fiber coding of temporal fine-structure: Effects of noise-induced hearing loss on auditory-nerve responses. In E. A. Lopez-Poveda, A. R. Palmer, & R. Meddis (Eds.), The Neurophysiological Bases of Auditory Perception (pp. 621–630). New York: Springer-Verlag.

    Google Scholar 

  • Henry, K. S., & Heinz, M. G. (2012). Diminished temporal coding with sensorineural hearing loss emerges in background noise. Nature Neuroscience, 15(10), 1362–1364.

    Google Scholar 

  • Henry, K. S., Kale, S., & Heinz, M. G. (2014). Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers. Frontiers in Systems Neuroscience, 8, 20.

    Google Scholar 

  • Henry, K. S., Kale, S., & Heinz, M. G. (2016). Distorted tonotopic coding of temporal envelope and fine structure with noise-induced hearing loss. The Journal of Neuroscience, 36(7), 2227–2237.

    Google Scholar 

  • Hu, B. (2012). Noise-induced structural damage to the cochlea. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss (pp. 57–86). New York: Springer-Verlag.

    Google Scholar 

  • Ingham, N. J., Itatani, N., Bleeck, S., & Winter, I. M. (2016). Enhancement of forward suppression begins in the ventral cochlear nucleus. Brain Research, 1639, 13–27.

    Google Scholar 

  • Irving, S., Moore, D. R., Liberman, M. C., & Sumner, C. J. (2011). Olivocochlear efferent control in sound localization and experience-dependent learning. The Journal of Neuroscience, 31(7), 2493–2501.

    Google Scholar 

  • Javel, E. (1981). Suppression of auditory nerve responses I: Temporal analysis, intensity effects and suppression contours. The Journal of the Acoustical Society of America, 69(6), 1735–1745.

    Google Scholar 

  • Johnson, D. H. (1974). The Response of Single Auditory-Nerve Fibers in the Cat to Single Tones: Synchrony and Average Discharge Rate. Cambridge, MA: MIT.

    Google Scholar 

  • Johnson, D. H. (1980). The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. The Journal of the Acoustical Society of America, 68(4), 1115–1122.

    Google Scholar 

  • Joris, P. X., & Yin, T. C. T. (1992). Responses to amplitude‐modulated tones in the auditory nerve of the cat. The Journal of the Acoustical Society of America, 91(1), 215–232.

    Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541–577.

    Google Scholar 

  • Joris, P. X., Van de Sande, B., Louage, D. H., & van der Heijden, M. (2006). Binaural and cochlear disparities. Proceedings of the National Academy of Sciences of the United States of America, 103(34), 12917–12922.

    Google Scholar 

  • Joris, P. X., Bergevin, C., Kalluri, R., McLaughlin, M., Michelet, P., van der Heijden, M., & Shera, C. A. (2011). Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17516–17520.

    Google Scholar 

  • Kale, S., & Heinz, M. G. (2010). Envelope coding in auditory nerve fibers following noise-induced hearing loss. Journal of the Association for Research in Otolaryngology, 11(4), 657–673.

    Google Scholar 

  • Kale, S., & Heinz, M. G. (2012). Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss. Hearing Research, 286(1–2), 64–75.

    Google Scholar 

  • Kawase, T., Delgutte, B., & Liberman, M. C. (1993). Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. Journal of Neurophysiology, 70(6), 2533–2549.

    Google Scholar 

  • Keilson, S. E., Richards, V. M., Wyman, B. E., & Young, E. D. (1997). The representation of concurrent vowels in the cat anaesthetized ventral cochlear nucleus: Evidence for a periodicity-tagged spectral representation. The Journal of the Acoustical Society of America, 102(2), 1056–1070.

    Google Scholar 

  • Köppl, C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. The Journal of Neuroscience, 17(9), 3312–3321.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. The Journal of Neuroscience, 29(45), 14077–14085.

    Google Scholar 

  • Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191–199.

    Google Scholar 

  • Larsen, E., Cedolin, L., & Delgutte, B. (2008). Pitch representations in the auditory nerve: Two concurrent complex tones. Journal of Neurophysiology, 100(3), 1301–1319.

    Google Scholar 

  • Le Prell, C., & Henderson, D. (2012). Perspectives on noise-induced hearing loss. In C. G. Le Prell, D. Henderson, R. R. Fay, & A. N. Popper (Eds.), Noise-Induced Hearing Loss (pp. 1–10). New York: Springer-Verlag.

    Google Scholar 

  • Liberman, M. C. (1978). Auditory‐nerve responses from cats raised in a low‐noise chamber. The Journal of the Acoustical Society of America, 63(2), 442–455.

    Google Scholar 

  • Liberman, M. C. (1980). Morphological differences among radial afferent fibers in the cat cochlea: An electron-microscopic study of serial sections. Hearing Research, 3(1), 45–63.

    Google Scholar 

  • Liberman, M. C. (1982). The cochlear frequency map for the cat: Labeling auditory‐nerve fibers of known characteristic frequency. The Journal of the Acoustical Society of America, 72(5), 1441–1449.

    Google Scholar 

  • Liberman, M. C., & Dodds, L. W. (1984). Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hearing Research, 16(1), 55–74.

    Google Scholar 

  • Liberman, M. C., & Kiang, N. Y.-S. (1984). Single-neuron labeling and chronic cochlear pathology. IV. Stereocilia damage and alterations in rate- and phase-level functions. Hearing Research, 16(1), 75–90.

    Google Scholar 

  • Liberman, M. C., Puria, S., & Guinan, J. J. (1996). The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. The Journal of the Acoustical Society of America, 99(6), 3572–3584.

    Google Scholar 

  • Loeb, G. E., White, M. W., & Merzenich, M. M. (1983). Spatial cross-correlation. A proposed mechanism for acoustic pitch perception. Biological Cybernetics, 47(3), 149–163.

    Google Scholar 

  • Maison, S. F., & Liberman, M. C. (2000). Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. The Journal of Neuroscience, 20(12), 4701–4707.

    Google Scholar 

  • Maison, S. F., Usubuchi, H., & Liberman, M. C. (2013). Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. The Journal of Neuroscience, 33(13), 5542–5552.

    Google Scholar 

  • Manley, G. A., & van Dijk, P. (2016). Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hearing Research, 336, 53–62.

    Google Scholar 

  • Middlebrooks, J. C., Simon, J. Z., Popper, A. N., & Fay, R. R. (Eds.). (2016). The Auditory System at the Cocktail Party. New York: Springer International Publishing.

    Google Scholar 

  • Miller, R. L., Schilling, J. R., Franck, K. R., & Young, E. D. (1997). Effects of acoustic trauma on the representation of the vowel “eh” in cat auditory nerve fibers. The Journal of the Acoustical Society of America, 101(6), 3602–3216.

    Google Scholar 

  • Moore, B. C. J. (1995). Perceptual Consequences of Cochlear Damage. New York: Oxford University Press.

    Google Scholar 

  • Moore, B. C. J. (2014). Auditory Processing of Temporal Fine Structure: Effects of Age and Hearing Loss. Singapore: World Scientific.

    Google Scholar 

  • Moore, B. C. J., & Skrodzka, E. (2002). Detection of frequency modulation by hearing-impaired listeners: Effects of carrier frequency, modulation rate, and added amplitude modulation. The Journal of the Acoustical Society of America, 111(1), 327–335.

    Google Scholar 

  • Moore, B. C. J., & Glasberg, B. R. (2004). A revised model of loudness perception applied to cochlear hearing loss. Hearing Research, 188(1–2), 70–88.

    Google Scholar 

  • Moore, B. C. J., Wojtczak, M., & Vickers, D. A. (1996). Effect of loudness recruitment on the perception of amplitude modulation. The Journal of the Acoustical Society of America, 100(1), 481–489.

    Google Scholar 

  • Moser, T., & Beutner, D. (2000). Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 883–888.

    Google Scholar 

  • Narayan, S. S., Temchin, A. N., Recio, A., & Ruggero, M. A. (1998). Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science, 282, 1882–1884.

    Google Scholar 

  • Nayagam, B. A., & Edge, A. S. B. (2016). Stem cells for the replacement of auditory neurons. In A. Dabdoub, B. Fritzsch, A. N. Popper, & R. R. Fay (Eds.), The Primary Auditory Neurons of the Mammalian Cochlea (pp. 263–286). New York: Springer-Verlag.

    Google Scholar 

  • Oxenham, A. J., & Shera, C. A. (2003). Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology, 4(4), 541–554.

    Google Scholar 

  • Palmer, A. R. (1990). The representation of the spectra and fundamental frequencies of steady-state single- and double-vowel sounds in the temporal discharge patterns of guinea pig cochlear-nerve fibers. The Journal of the Acoustical Society of America, 88(3), 1412–1426.

    Google Scholar 

  • Palmer, A. R., & Russell, I. J. (1986). Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hearing Research, 24(1), 1–15.

    Google Scholar 

  • Palmer, A. R., Winter, I. M., & Darwin, C. J. (1986). The representation of steady-state vowel sounds in the temporal discharge patterns of the guinea pig cochlear nerve and primarylike cochlear nucleus neurons. The Journal of the Acoustical Society of America, 79(1), 100–113.

    Google Scholar 

  • Patuzzi, R. (1996). Cochlear micromechanics and macromechanics. In P. Dallos, A. N. Popper, & R. R. Fay (Eds.), The Cochlea (pp. 186–257). New York: Springer-Verlag.

    Google Scholar 

  • Pickles, J. O. (1983). Auditory-nerve correlates of loudness summation with stimulus bandwidth in normal and pathological cochleae. Hearing Research, 12(2), 239–250.

    Google Scholar 

  • Popelka, G. R., Moore, B. C. J., Fay, R. R., & Popper, A. N. (2016). Hearing Aids. New York: Springer International Publishing.

    Google Scholar 

  • Pujol, R., & Puel, J.-L. (1999). Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: A review of recent findings. Annals of the New York Academy of Sciences, 884(1), 249–254.

    Google Scholar 

  • Rajan, R. (2000). Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound. The Journal of Neuroscience, 20(17), 6684–6693.

    Google Scholar 

  • Recio, A., Rhode, W. S., Kiefte, M., & Kluender, K. R. (2002). Responses to cochlear normalized speech stimuli in the auditory nerve of cat. The Journal of the Acoustical Society of America, 111(5), 2213–2218.

    Google Scholar 

  • Recio-Spinoso, A., Temchin, A. N., van Dijk, P., Fan, Y. H., & Ruggero, M. A. (2005). Wiener-kernel analysis of responses to noise of chinchilla auditory-nerve fibers. Journal of Neurophysiology, 93(6), 3615–3634.

    Google Scholar 

  • Relkin, E. M., & Turner, C. W. (1988). A reexamination of forward masking in the auditory nerve. The Journal of the Acoustical Society of America, 84(2), 584–591.

    Google Scholar 

  • Relkin, E. M., & Doucet, J. R. (1997). Is loudness simply proportional to the auditory nerve spike count? The Journal of the Acoustical Society of America, 101(5), 2735–2740.

    Google Scholar 

  • Robertson, D., Sellick, P. M., & Patuzzi, R. (1999). The continuing search for outer hair cell afferents in the guinea pig spiral ganglion. Hearing Research, 136(1–2), 151–158.

    Google Scholar 

  • Rose, J. E., Brugge, J. F., Anderson, D. J., & Hind, J. E. (1967). Phase-locked response to low frequency tones in single auditory nerve fibers of the squirrel monkey. Journal of Neurophysiology, 30, 769–793.

    Google Scholar 

  • Ruggero, M. A. (1994). Cochlear delays and traveling waves: Comments on “Experimental look at cochlear mechanics.” Audiology, 33(3), 131–142.

    Google Scholar 

  • Ruggero, M. A., & Temchin, A. N. (2005). Unexceptional sharpness of frequency tuning in the human cochlea. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18614–18619.

    Google Scholar 

  • Sachs, M. B., & Kiang, N. Y.-S. (1968). Two-tone inhibition in auditory-nerve fibers. The Journal of the Acoustical Society of America, 43(5), 1120–1128.

    Google Scholar 

  • Sachs, M. B., & Abbas, P. J. (1974). Rate versus level functions for auditory‐nerve fibers in cats: Tone‐burst stimuli. The Journal of the Acoustical Society of America, 56(6), 1835–1847.

    Google Scholar 

  • Sachs, M. B., & Young, E. D. (1979). Encoding of steady-state vowels in the auditory nerve: Representation in terms of discharge rate. The Journal of the Acoustical Society of America, 66, 470–479.

    Google Scholar 

  • Sachs, M. B., & Young, E. D. (1980). Effects of nonlinearities on speech encoding in the auditory nerve. The Journal of the Acoustical Society of America, 68, 858–875.

    Google Scholar 

  • Sayles, M., Walls, M. K., & Heinz, M. G. (2016). Suppression measured from chinchilla auditory-nerve-fiber responses following noise-induced hearing loss: Adaptive-tracking and systems-identification approaches. In P. van Dijk, D. Başkent, E. Gaudrain, E. de Kleine, A. Wagner, & C. Lanting (Eds.), Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing (pp. 285–295). New York: Springer International Publishing.

    Google Scholar 

  • Schaette, R., & McAlpine, D. (2011). Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. The Journal of Neuroscience, 31(38), 13452–13457.

    Google Scholar 

  • Scheidt, R. E., Kale, S., & Heinz, M. G. (2010). Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses. Hearing Research, 269(1–2), 23–33.

    Google Scholar 

  • Schmiedt, R. A. (1982). Boundaries of two-tone rate suppression of cochlear-nerve activity. Hearing Research, 7(3), 335–351.

    Google Scholar 

  • Schmiedt, R. A., & Schulte, B. A. (1992). Physiologic and histopathologic changes in quiet- and noise-aged gerbil cochleas. In A. L. Dancer, D. Henderson, R. J. Salvi, & R. P. Hamernik (Eds.), Noise-Induced Hearing Loss (pp. 246–256). St. Louis, MO: Mosby.

    Google Scholar 

  • Schmiedt, R. A., Mills, J. H., & Adams, J. C. (1990). Tuning and suppression in auditory nerve fibers of aged gerbils raised in quiet or noise. Hearing Research, 45(3), 221–236.

    Google Scholar 

  • Sellick, P. M., Patuzzi, R., & Johnstone, B. M. (1982). Measurement of basilar membrane motion in the guinea pig using the Mossbauer technique. The Journal of the Acoustical Society of America, 72, 131–141.

    Google Scholar 

  • Shamma, S. A. (1985). Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. The Journal of the Acoustical Society of America, 78(5), 1612–1621.

    Google Scholar 

  • Shamma, S. A., Shen, N. M., & Gopalaswamy, P. (1989). Stereausis: Binaural processing without neural delays. The Journal of the Acoustical Society of America, 86(3), 989–1006.

    Google Scholar 

  • Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America, 99(5), 3318–3323.

    Google Scholar 

  • Shera, C. A., Guinan, J. J., & Oxenham, A. J. (2010). Otoacoustic estimation of cochlear tuning: Validation in the chinchilla. Journal of the Association for Research in Otolaryngology, 11(3), 343–365.

    Google Scholar 

  • Siebert, W. M. (1968). Stimulus transformations in the peripheral auditory system. In P. A. Kolers & M. Eden (Eds.), Recognizing Patterns (pp. 104–133). Cambridge, MA: MIT Press.

    Google Scholar 

  • Smalt, C. J., Heinz, M. G., & Strickland, E. A. (2014). Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses. Journal of the Association for Research in Otolaryngology, 15(2), 159–173.

    Google Scholar 

  • Smeds, K., & Leijon, A. (2011). Loudness and hearing loss. In M. Florentine, A. N. Popper, and R. R. Fay (Eds.), Loudness (pp. 223–259). New York: Springer-Verlag.

    Google Scholar 

  • Smith, R. L., & Brachman, M. L. (1980). Response modulation of auditory-nerve fibers by AM stimuli: Effects of average intensity. Hearing Research, 2(2), 123–133.

    Google Scholar 

  • Sterenborg, J. C., Pilati, N., Sheridan, C. J., Uchitel, O. D., Forsythe, I. D., & Barnes-Davies, M. (2010). Lateral olivocochlear (LOC) neurons of the mouse LSO receive excitatory and inhibitory synaptic inputs with slower kinetics than LSO principal neurons. Hearing Research, 270(1-2), 119–126.

    Google Scholar 

  • Strelcyk, O., Christoforidis, D., & Dau, T. (2009). Relation between derived-band auditory brainstem response latencies and behavioral frequency selectivity. The Journal of the Acoustical Society of America, 126(4), 1878–1888.

    Google Scholar 

  • Suzuki, J., Corfas, G., & Liberman, M. C. (2016). Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Scientific Reports, 6, 24907.

    Google Scholar 

  • Temchin, A. N., & Ruggero, M. A. (2009). Phase-locked responses to tones of chinchilla auditory nerve fibers: Implications for apical cochlear mechanics. Journal of the Association for Research in Otolaryngology, 11(2), 297–318.

    Google Scholar 

  • van der Heijden, M., & Joris, P. X. (2005). The speed of auditory low-side suppression. Journal of Neurophysiology, 93(1), 201–209.

    Google Scholar 

  • Viemeister, N. F. (1983). Auditory intensity discrimination at high frequencies in the presence of noise. Science, 221, 1206–1207.

    Google Scholar 

  • Viemeister, N. F. (1988). Intensity coding and the dynamic range problem. Hearing Research, 34, 267–274.

    Google Scholar 

  • Weiss, T. F., & Rose, C. (1988a). A comparison of synchronization filters in different auditory receptor organs. Hearing Research, 33(2), 175–179.

    Google Scholar 

  • Weiss, T. F., & Rose, C. (1988b). Stages of degradation of timing information in the cochlea: A comparison of hair cell and nerve-fiber responses in the alligator lizard. Hearing Research, 33(2), 167–174.

    Google Scholar 

  • Wen, B., Wang, G. I., Dean, I., & Delgutte, B. (2012). Time course of dynamic range adaptation in the auditory nerve. Journal of Neurophysiology, 108(1), 69–82.

    Google Scholar 

  • Westerman, L. A., & Smith, R. L. (1984). Rapid and short-term adaptation in auditory nerve responses. Hearing Research, 15(3), 249–260.

    Google Scholar 

  • Winslow, R. L., & Sachs, M. B. (1988). Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hearing Research, 35(2–3), 165–189.

    Google Scholar 

  • Yates, G. K. (1990). Basilar membrane nonlinearity and its influence on auditory nerve rate-intensity functions. Hearing Research, 50(1–2), 145–162.

    Google Scholar 

  • Young, E. D. (2008). Neural representation of spectral and temporal information in speech. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 923–945.

    Google Scholar 

  • Young, E. D., & Sachs, M. B. (1979). Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. The Journal of the Acoustical Society of America, 66, 1381–1403.

    Google Scholar 

  • Young, E. D., & Barta, P. E. (1986). Rate responses of auditory nerve fibers to tones in noise near masked threshold. The Journal of the Acoustical Society of America, 79(2), 426–442.

    Google Scholar 

  • Zilany, M. S. A., & Bruce, I. C. (2006). Modeling auditory-nerve responses for high sound pressure levels in the normal and impaired auditory periphery. The Journal of the Acoustical Society of America, 120(3), 1446–1466.

    Google Scholar 

  • Zilany, M. S. A., & Carney, L. H. (2010). Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics. The Journal of Neuroscience, 30(31), 10380–10390.

    Google Scholar 

  • Zilany, M. S. A., Bruce, I. C., & Carney, L. H. (2014). Updated parameters and expanded simulation options for a model of the auditory periphery. The Journal of the Acoustical Society of America, 135(1), 283–286.

    Google Scholar 

Download references

Acknowledgements

Preparation of this chapter was partially supported by a grant from the National Institute on Deafness and Other Communication Disorders (R01-DC009838). Mark Sayles was supported by a UK-US Fulbright Scholarship from Action on Hearing Loss and a postdoctoral fellowship from the Research Foundation, Flanders, Belgium.

Compliance with Ethics Requirements Mark Sayles declares that he has no conflict of interest. Michael G. Heinz declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Heinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sayles, M., Heinz, M.G. (2017). Afferent Coding and Efferent Control in the Normal and Impaired Cochlea. In: Manley, G., Gummer, A., Popper, A., Fay, R. (eds) Understanding the Cochlea. Springer Handbook of Auditory Research, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-52073-5_8

Download citation

Publish with us

Policies and ethics