Skip to main content

Advertisement

Log in

Treatment strategy with multidrug therapy and tonsillectomy pulse therapy for childhood-onset severe IgA nephropathy

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

IgA nephropathy is a typical chronic glomerulonephritis that tends to occur in childhood.

Method

We reviewed the report on pathogenesis, treatment strategy with multidrug therapy and tonsillectomy pulse therapy for childhood-onset severe IgA nephropathy to clarify the pathophysiology and treatment of IgA nephropathy in childhood.

Results

In recent years, it has been found that the pathogenesis at onset is associated with aberrant glycosylation at the IgA1 hinge. Given this genetic background, the aberrantly glycosylated IgA1immune complex produced by antigen-stimulated T cells and B cells is deposited in the glomeruli. Inflammation is induced via activation of the complement, macrophages and mesangial cells, and glomerular damage progresses thereafter. Treatment is selected according to the severity of IgA nephropathy. In order to prevent the development of renal damage, it is important to control the associated immune responses. For severe IgA nephropathy, in particular, multidrug therapy with prednisolone, immunosuppressants, and angiotensin enzyme synthesis inhibitors and tonsillectomy methylprednisolone pulse therapy are now performed- and, as a result, the number of renal deaths has decreased and the long-term prognosis has improved.

Conclusion

The prognosis of IgA nephropathy is improving. In the future, it will be important to develop a treatment method that takes into consideration the fact that children are in their growth and development stage and, therefore, seeks to minimizes side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berger J, Hinglais N. Les depots intercapillaireis d’IgA-IgG. J Urol Nephrol. 1968;74(9):694–5.

    CAS  Google Scholar 

  2. Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med. 2013;368(25):2402–14.

    Article  CAS  PubMed  Google Scholar 

  3. Andreoli SP, Bergstein JM. Treatment of severe IgA nephropathy in children. Pediatr Nephrol. 1989;3(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  4. Kusumoto Y, Takebayashi S, Taguchi T, Harada T, Naito S. Long-term prognosis and prognostic indices of IgA nephropathy in juvenile and in adult Japanese. Clin Nephrol. 1987;28(3):118–24.

    CAS  PubMed  Google Scholar 

  5. Yoshikawa N, Ito H, Sakai T, Takekoshi Y, Honda M, Awazu M, et al. A controlled trial of combined therapy for newly diagnosed severe childhood IgA nephropathy. J Am Soc Nephrol. 1999;10(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  6. Nozawa R, Suzuki J, Takahashi A, Isome M, Kawasaki Y, Suzuki S, et al. Clinicopathological features and the prognosis of IgA nephropathy in Japanese children on long-term observation. Clin Nephrol. 2005;64(3):171–9.

    Article  CAS  PubMed  Google Scholar 

  7. Yoshikawa N, Honda M, Iijima K, Awazu M, Hattori S, Nakanishi K, et al. Japanese pediatric IgA nephropathy treatment study group: steroid treatment for severe childhood iga nephropathy: a randomized, controlled trial. Clin J Am Soc Nephrol. 2006;1(3):511–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kawasaki Y, Hosoya M, Suzuki J, Onishi N, Takahashi A, Isome M, et al. Efficacy of multidrug therapy combined with mizoribine in children with diffuse IgA nephropathy in comparison with multidrug therapy without mizoribine and with methylprednisolone pulse therapy. Am J Nephrol. 2004;24(6):576–81.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshikawa N, Nakanishi K, Ishikura K, Hataya H, Iijima K, Honda M, et al. Combination therapy with mizoribine for severe childhood IgA nephropathy: a pilot study. Pediatr Nephrol. 2008;23(5):757–63.

    Article  PubMed  Google Scholar 

  10. Pediatric IgA Nephropathy Treatment Guideline Development Committee. Pediatric IgA Nephropathy Treatment Guideline 1st. Jpn J Nephrol. 2008;50(1):31–41.

    Google Scholar 

  11. Nakanishi K, Yoshikawa N. Immunoglobulin A Nephropathy. Section5. Glomerular Disease. In: Avner ED, Harmon WE, Niaudet P, Yoshikawa N, editors. Pediatric Nephrology. 6th ed. Springer; 2009. p. 757–82.

    Chapter  Google Scholar 

  12. Clinical Practice Guidelines for Pediatric IgA Nephropathy 2020 Japan Society for Pediatric Nephropathy / Editing Diagnosis and Treatment https://minds.jcqhc.or.jp/docs/gl_pdf/G0001187/4/iga_nephropathy_in_children.pdf Shindantotiryosya in Japanese

  13. Suzuki H, Kikuchi M, Koike K, Komatsu H, Matsuzaki K, Takahashi K, et al. A digest from evidence-based clinical practice guideline for IgA nephropathy 2020. Clin Exp Nephrol. 2021;25(12):1269–76.

    Article  PubMed  Google Scholar 

  14. Hotta O, Miyazaki M, Furuta T, Tomioka S, Chiba S, Horigome I, et al. Tonsillectomy and steroid pulse therapy significantly impact on clinical remission in patients with IgA nephropathy. Am J Kidney Dis. 2001;38(4):736–43.

    Article  CAS  PubMed  Google Scholar 

  15. Liu LL, Wang LN, Jiang Y, Yao L, Dong LP, Li ZL, et al. Tonsillectomy for IgA nephropathy: a meta-analysis. Am J Kidney Dis. 2015;65(1):80–7.

    Article  PubMed  Google Scholar 

  16. Kawamura T, Yoshimura M, Miyazaki Y, Okamoto H, Kimura K, Hirano K, et al. A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrol Dial Transplant. 2014;29(8):1546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawasaki Y, Takano K, Suyama K, Isome M, Suzuki H, Sakuma H, et al. Efficacy of tonsillectomy plus therapy versus multiple-drug therapy for IgA nephropathy. Pediatr Nephrol. 2008;21(11):1701–6.

    Article  Google Scholar 

  18. Gharavi AG, Yan Y, Scolari F, Schena FP, Frasca GM, Ghiggeri, et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22–23. Nat Genet. 2000;26(3):354–7.

    Article  CAS  PubMed  Google Scholar 

  19. Bertinetto FE, Calafell F, Roggero S, Chidichimo R, Garino E, Marcuccio C, et al. Search for genetic association between IgA nephropathy and candidate genes selected by function or by gene mapping at loci IGAN2 and IGAN3. Nephrol Dial Transplant. 2012;27(6):2328–37.

    Article  CAS  PubMed  Google Scholar 

  20. Bisceglia L, Cerullo G, Forabosco P, Torres DD, Scolari F, Perna MD, et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am J Hum Genet. 2006;79(6):1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takei T, Iida A, Nitta K, Tanaka T, Ohnishi Y, Yamada R, et al. Association between single-nucleotide polymorphisms in selectin genes and immunoglobulin A nephropathy. Am J Hum Genet. 2002;70(3):781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akiyama F, Tanaka T, Yamada R, Ohnishi Y, Tsunoda T, Maeda S, et al. Single-nucleotide polymorphisms in the class II region of the major histocompatibility complex in Japanese patients with immunoglobulin A nephropathy. J Hum Genet. 2002;47(10):532–8.

    Article  CAS  PubMed  Google Scholar 

  23. Obara W, Lida A, Suzuki Y, Tanaka T, Akiyama F, Maeda S, et al. Association of single-nucleotide polymorphisms in the polymeric immunoglobulin receptor gene with immunoglobulin A nephropathy (IgAN) in Japanese patients. J Hum Genet. 2003;48(6):293–9.

    Article  CAS  PubMed  Google Scholar 

  24. Ohtsubo S, Iida A, Nitta K, Tanaka T, Yamada R, Ohnishi Y, et al. Association of a single-nucleotide polymorphism in the immunoglobulin mu-binding protein 2 gene with immunoglobulin A nephropathy. J Hum Genet. 2005;50(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  25. Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011;43(4):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8(6):e1002765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet. 2014;46(11):1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tomino Y. Pathogenesis and treatment of chronic kidney disease: a review of our recent basic and clinical data. Kidney Blood Press Res. 2014;39(5):450–89.

    Article  CAS  PubMed  Google Scholar 

  29. Kuper CF. Histopathology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):609–15.

    Article  PubMed  Google Scholar 

  30. Fernandes JR, Snider DP. Polymeric IgA-secreting and mucosal homing pre-plasma cells in normal human peripheral blood. Int Immunol. 2010;22(6):527–40.

    Article  CAS  PubMed  Google Scholar 

  31. Lin M, Du L, Brandtzaeg P, Pan-Hammarström Q. IgA subclass switch recombination in human mucosal and systemic immune compartments. Mucosal Immunol. 2014;7(3):511–20.

    Article  CAS  PubMed  Google Scholar 

  32. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA, et al. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  33. Knoppova B, Reily C, King RG, Julian BA, Novak J, Green TJ. Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J Clin Med. 2021;10(19):4501. https://doi.org/10.3390/jcm10194501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kano T, Suzuki H, Makita Y, Fukao Y, Suzuki Y. Nasal-associated lymphoid tissue is the major induction site for nephritogenic IgA in murine IgA nephropathy. Kidney Int. 2021;100(2):364–76.

    Article  CAS  PubMed  Google Scholar 

  35. Coppo R. The gut-kidney axis in IgA nephropathy: role of microbiota and diet on genetic predisposition. Pediatr Nephrol. 2018;33(1):53–61.

    Article  PubMed  Google Scholar 

  36. Suzuki H. Biomarkers for IgA nephropathy on the basis of multi-hit pathogenesis. Clin Exp Nephrol. 2019;23(1):26–31.

    Article  CAS  PubMed  Google Scholar 

  37. Suzuki H, Kiryluk K, Novak J, Moldoveanu Z, Herr AB, Renfrow MB, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol. 2011;22(10):1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lau KK, Wyatt RJ, Moldoveanu Z, Tomana M, Julian BA, Hogg RJ, et al. Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schönlein purpura. Pediatr Nephrol. 2007;22(12):2067–72.

    Article  PubMed  Google Scholar 

  39. Suzuki H, Novak J. IgA glycosylation and immune complex formation in IgAN. Semin Immunopathol. 2021;43(5):669–78.

    Article  CAS  PubMed  Google Scholar 

  40. Rizk DV, Saha MK, Hall S, Novak L, Brown R, Huang ZQ, et al. Glomerular immunodeposits of patients with IgA nephropathy are enriched for IgG autoantibodies specific for galactose-deficient IgA1. J Am Soc Nephrol. 2019;30(10):2017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ruszkowski J, Lisowska KA, Pindel M, Heleniak Z, Dębska-Ślizień A, Witkowski JM. T cells in IgA nephropathy: role in pathogenesis, clinical significance and potential therapeutic target. Clin Exp Nephrol. 2019;23(3):291–303.

    Article  CAS  PubMed  Google Scholar 

  42. Cao Y, Lu G, Chen X, Chen X, Guo N, Li W. BAFF is involved in the pathogenesis of IgA nephropathy by activating the TRAF6/NF-kappaB signaling pathway in glomerular mesangial cells. Mol Med Rep. 2020;21(2):795–805.

    CAS  PubMed  Google Scholar 

  43. Takahara M, Nagato T, Nozaki Y, Kumai T, Katada A, Hayashi T, et al. A proliferation-inducing ligand (APRIL) induced hyper-production of IgA from tonsillar mononuclear cells in patients with IgA nephropathy. Cell Immunol. 2019;341:103925.

    Article  CAS  PubMed  Google Scholar 

  44. Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. IgA nephropathy. Nat Rev Dis Primers. 2016;2:16001. https://doi.org/10.1038/nrdp.

    Article  PubMed  Google Scholar 

  45. Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol. 2006;17(6):1724–34.

    Article  CAS  PubMed  Google Scholar 

  46. Utsunomiya Y, Kawamura T, Abe A, Imai H, Hirano K, Maruyama N, et al. Significance of mesangial expression of alpha-smooth muscle actin in the progression of IgA nephropathy. Am J Kidney Dis. 1999;34(5):902–10.

    Article  CAS  PubMed  Google Scholar 

  47. Gross CW, Harrison SE. Tonsils and adenoids. Pediatr Rev. 2000;21(3):75–8.

    Article  CAS  PubMed  Google Scholar 

  48. Harabuchi Y, Takahara M. Recent advances in the immunological understanding of association between tonsil and immunoglobulin A nephropathy as a tonsil-induced autoimmune/inflammatory syndrome. Immun Inflamm Dis. 2019;7(2):86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamaguchi H, Goto S, Takahashi N, Tsuchida M, Watanabe H, Yamamoto S, et al. Aberrant mucosal immunoreaction to tonsillar microbiota in immunoglobulin A nephropathy. Nephrol Dial Transplant. 2021;36(1):75–86.

    Article  CAS  PubMed  Google Scholar 

  50. Sato D, Suzuki Y, Kano T, Suzuki H, Matsuoka J, Yokoi H, et al. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients. Nephrol Dial Transplant. 2012;27(3):1090–7.

    Article  CAS  PubMed  Google Scholar 

  51. Bene MC, Faure G, Hurault B, Kessler M, Duheille J. immunoglobulin A nephropathy. Quantitative immunohistomorphometry of the tonsillar plasma cells evidences an invasion of the immunoglobulin A versus immunoglobulin G secreting cell balance. J Clin Invest. 1983;71(5):1342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng H, Li H, Ohe R, Naing YA, Yang S, Kabasawa T, et al. Thymic stromal lymphopoietin in tonsillar follicular dendritic cells correlates with elevated serum immunoglobulin A titer by promoting tonsillar immunoglobulin A class switching in immunoglobulin A nephropathy. Transl Res. 2016;176:1–17. https://doi.org/10.1016/j.trsl.

    Article  CAS  PubMed  Google Scholar 

  53. Makita Y, Suzuki H, Kano T, Takahashi A, Julian BA, Novak J, et al. TLR9 activation induces aberrant IgA glycosylation via APRIL- and IL-6-mediated pathways in IgA nephropathy. Kidney Int. 2020;97(2):340–9.

    Article  CAS  PubMed  Google Scholar 

  54. Shima Y, Nakanishi K, Hama T, Mukaiyama H, Togawa H, Sako M, et al. Spontaneous remission in children with IgA nephropathy. Pediatr Nephrol. 2013;28(1):71–6.

    Article  PubMed  Google Scholar 

  55. Higa A, Shima Y, Hama T, Sato M, Mukaiyama H, Togawa H, et al. Long-term outcome of childhood IgA nephropathy with minimal proteinuria. Pediatr Nephrol. 2015;30(12):2121–7.

    Article  PubMed  Google Scholar 

  56. Nakanishi K, Iijima K, Ishikura K, Hataya H, Awazu M, Sako M, Japanese Pediatric IgA Nephropathy Treatment Study Group, et al. Efficacy and safety of lisinopril for mild childhood IgA nephropathy: a pilot study. Pediatr Nephrol. 2009;24(4):845–9.

    Article  PubMed  Google Scholar 

  57. Shima Y, Nakanishi K, Sako M, Oba MS, Hamasaki Y, Hataya H, et al. Lisinopril versus lisinopril and losartan for mild childhood IgA nephropathy: a randomized controlled trial (JSKDC01 study). Pediatr Nephrol. 2019;34(5):837–46.

    Article  PubMed  Google Scholar 

  58. Shima Y, Nakanishi K, Kaku Y, Ishikura K, Hataya H, Matsuyama T, et al. Combination therapy with or without warfarin and dipyridamole for severe childhood IgA nephropathy: an RCT. Pediatr Nephrol. 2018;33(11):2103–12.

    Article  PubMed  Google Scholar 

  59. Kawasaki Y, Maeda R, Kanno S, Suzuki Y, Ohara S, Suyama K, et al. Comparison of long-term follow-up outcomes between multiple-drugs combination therapy and tonsillectomy pulse therapy for pediatric IgA nephropathy. Clin Exp Nephrol. 2017;22(4):917–23.

    Article  PubMed  Google Scholar 

  60. McEnery PT, McAdams AJ, West CD. Glomerular morphology, natural history and treatment of children with IgA-IgG mesangial nephropathy. Perspect Nephrol Hypertens. 1973;1(Pt1):305–20.

    PubMed  Google Scholar 

  61. Pozzi C, Andrulli S, Del Vecchio L, Melis P, Fogazzi GB, Altieri P, et al. Corticosteroids effectiveness in IgA nephropathy: long-term results of a randomized controlled trial. J Am Soc Nephrol. 2004;15(1):157–63.

    Article  CAS  PubMed  Google Scholar 

  62. Welch TR, Fryer C, Shely E, Witte DP, Quinlan M. Double-blind, controlled trial of short-term prednisone therapy in immunoglobulin A glomerulonephritis. J Pediatr. 1992;121(3):474–7.

    Article  CAS  PubMed  Google Scholar 

  63. Kawasaki Y, Suzuki J, Sakai N, Etoh S, Murai H, Nozawa R, et al. Efficaty of prednisolone and mizoribine therapy for diffuse IgA nephropathy. Am J Nephrol. 2004;24(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  64. Kawasaki Y, Suyama K, Miyazaki K, Kanno S, Ono A, Suzuki Y, et al. Resistance factors for the treatment of immunoglobulin A nephropathy with diffuse mesangial proliferation. Nephrology. 2014;19(7):384–91.

    Article  CAS  PubMed  Google Scholar 

  65. Kamei K, Nakanishi K, Ito S, Saito M, Sako M, Ishikura K, et al. Japanese pediatric IgA nephropathy treatment study group: long-term results of a randomized controlled trial in childhood iga nephropathy. Clin J Am Soc Nephrol. 2011;6(6):1301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yata N, Nakanishi K, Shima Y, Togawa H, Obana M, Sako M, et al. Improved renal survival in Japanese children with IgA nephropathy. Pediatr Nephrol. 2008;23(6):905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lozano L, Garcia-Hoya R, Egido J, Blasco R, Sancho J, Hernando L. Tonsillectomy decreases the synthesis of polymeric IgA by blood lymphocytes and clinical activity in patients with IgA nephropathy. Proc EDTA-ERA. 1985;22(1):33–7.

    Google Scholar 

  68. Maeda Y, Terazawa K, Kawakami S, Ogura Y, Sugiyama M, Terazawa K. Clinical and immunological study of IgA nephropathy before and after tonsillectomy. Acta Otolaryngol. 1988;508:29–35.

    Google Scholar 

  69. Wyatt RJ, Hogg RJ. Evidence-based assessment of treatment options for children with IgA nephropathy. Pediatr Nephrol. 2001;16(2):156–67.

    Article  CAS  PubMed  Google Scholar 

  70. Yamada A, Fujinaga S, Sakuraya K, Satoshi A, Hirano D. Initial treatment with pulse methylprednisolone followed by short-term prednisolone and tonsillectomy for childhood IgA nephropathy. Clin Exp Nephrol. 2018;22(5):1143–9.

    Article  CAS  PubMed  Google Scholar 

  71. Fujinaga S, Ohtomo Y, Hirano D, Nishizaki N, Someya T, Ohtsuka Y, et al. Low-dose pulse methylprednisolone followed by short-term combination therapy and tonsillectomy for childhood IgA nephropathy. Pediatr Nephrol. 2010;25(3):563–4.

    Article  PubMed  Google Scholar 

  72. Kawasaki Y, Suyama K, Abe Y, Ushijima Y, Sakai N, Takano K, et al. Tonsillectomy with methylprednisolone pulse therapy as rescue treatment for steroid-resistant IgA nephropathy in children. Tohoku J Exp Med. 2009;218(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  73. Enya T, Miyazaki K, Miyazawa T, Oshima R, Morimoto Y, Okada M, et al. Early tonsillectomy for severe immunoglobulin A nephropathy significantly reduces proteinuria. Pediatr Int. 2020;62(9):1054–7.

    Article  CAS  PubMed  Google Scholar 

  74. Kawasaki Y, Maeda R, Kanno S, Suzuki Y, Ohara S, Suyama K, et al. Long-term follow-up outcome of pediatric IgA nephropathy treated with tonsillectomy plus methylprednisolone pulse therapy. Pediatr Int. 2017;59(1):41–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiko Kawasaki.

Ethics declarations

Conflict of interest

The author had declared no conflicts of interest.

Human and animal rights

This paper is an original review of previously published papers and has not been reviewed by the Institutional Review Board.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawasaki, Y. Treatment strategy with multidrug therapy and tonsillectomy pulse therapy for childhood-onset severe IgA nephropathy. Clin Exp Nephrol 26, 501–511 (2022). https://doi.org/10.1007/s10157-022-02187-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02187-z

Keywords

Navigation