Skip to main content

Cardiovascular Disease in Pediatric Chronic Kidney Disease

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

In children with chronic kidney disease (CKD), cardiovascular disease (CVD) remains one of the most common causes of death. Children with CKD have a high incidence and prevalence of traditional and CKD-related CVD risk factors in children. Early markers of cardiomyopathy, such as left ventricular hypertrophy (LVH) and LV dysfunction and early markers of atherosclerosis, such as increased carotid artery intima-media thickness (IMT), carotid arterial wall stiffness, and coronary artery calcification are frequently found in this patient population. Early identification and monitoring of modifiable risk factors and treatment of asymptomatic CVD might lead to decrease of cardiovascular morbidity and mortality in young adults who developed CKD during childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levey AS, Beto JA, Coronado BE, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation Task Force on Cardiovascular Disease. Am J Kidney Dis Off J Natl Kidney Found. 1998;32:853–906.

    Article  CAS  Google Scholar 

  2. Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141:191–7.

    Article  CAS  PubMed  Google Scholar 

  3. Mathews TJ, Minino AM, Osterman MJ, Strobino DM, Guyer B. Annual summary of vital statistics: 2008. Pediatrics. 2011;127:146–57.

    Article  CAS  PubMed  Google Scholar 

  4. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350:2654–62.

    Article  CAS  PubMed  Google Scholar 

  5. Groothoff JW, Gruppen MP, Offringa M, et al. Mortality and causes of death of end-stage renal disease in children: a Dutch cohort study. Kidney Int. 2002;61:621–9.

    Article  PubMed  Google Scholar 

  6. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106:100–5.

    Article  PubMed  Google Scholar 

  7. U.S.Renal Data System. USRDS 2000 annual data report. 2000. Bethesda: The National Institutes of Health, National Institute of Diabetes and Digestive and Kindney Diseases; 2000.

    Google Scholar 

  8. Offner G, Latta K, Hoyer PF, et al. Kidney transplanted children come of age. Kidney Int. 1999;55:1509–17.

    Article  CAS  PubMed  Google Scholar 

  9. Briese S, Wiesner S, Will JC, et al. Arterial and cardiac disease in young adults with childhood-onset end-stage renal disease-impact of calcium and vitamin D therapy. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2006;21:1906–14.

    CAS  Google Scholar 

  10. Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2011;11:2432–42.

    Article  CAS  Google Scholar 

  11. Mitsnefes MM, Laskin BL, Dahhou M, Zhang X, Foster BJ. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990–2010. JAMA J Am Med Assoc. 2013;309:1921–9.

    Article  CAS  Google Scholar 

  12. Mitsnefes M. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kavey RE, Allada V, Daniels SR, et al. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 2006;114:2710–38.

    Article  PubMed  Google Scholar 

  14. Brunner FP, Fassbinder W, Broyer M, et al. Survival on renal replacement therapy: data from the EDTA Registry. Nephrol Dial Transplant. 1988;3:109–22.

    Article  CAS  PubMed  Google Scholar 

  15. Chavers BM, Li S, Collins AJ, Herzog CA. Cardiovascular disease in pediatric chronic dialysis patients. Kidney Int. 2002;62:648–53.

    Article  PubMed  Google Scholar 

  16. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064–75.

    Article  CAS  PubMed  Google Scholar 

  17. Mitsnefes MM, Daniels SR, Schwartz SM, Meyer RA, Khoury P, Strife CF. Severe left ventricular hypertrophy in pediatric dialysis: prevalence and predictors. Pediatr Nephrol. 2000;14:898–902.

    Article  CAS  PubMed  Google Scholar 

  18. Mitsnefes MM, Barletta GM, Dresner IG, et al. Severe cardiac hypertrophy and long-term dialysis: the Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2006;21:1167–70.

    Article  PubMed  Google Scholar 

  19. Herzog CA. Acute myocardial infarction in patients with end-stage renal disease. Kidney Int Suppl. 1999;71:S130–3.

    Article  CAS  PubMed  Google Scholar 

  20. Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura S, Uzu T, Inenaga T, Kimura G. Prediction of coronary artery disease and cardiac events using electrocardiographic changes during hemodialysis. Am J Kidney Dis Off J Natl Kidney Found. 2000;36:592–9.

    Article  CAS  Google Scholar 

  22. Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) Study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47:S4–20.

    Article  PubMed  Google Scholar 

  23. Portaluppi F, Montanari L, Ferlini M, Gilli P. Altered circadian rhythms of blood pressure and heart rate in non-hemodialysis chronic renal failure. Chronobiol Int. 1990;7:321–7.

    Article  CAS  PubMed  Google Scholar 

  24. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  25. Luke RG. Chronic renal failure – a vasculopathic state. N Engl J Med. 1998;339:841–3.

    Article  CAS  PubMed  Google Scholar 

  26. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: results from the atherosclerosis risk in communities study. J Am Soc Nephrol JASN. 2005;16:529–38.

    Article  PubMed  Google Scholar 

  27. Zoccali C. Traditional and emerging cardiovascular and renal risk factors: an epidemiologic perspective. Kidney Int. 2006;70:26–33.

    Article  CAS  PubMed  Google Scholar 

  28. Zoccali C, Tripepi G, Cambareri F, et al. Adipose tissue cytokines, insulin sensitivity, inflammation, and cardiovascular outcomes in end-stage renal disease patients. J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found. 2005;15:125–30.

    Article  Google Scholar 

  29. Querfeld U. The clinical significance of vascular calcification in young patients with end-stage renal disease. Pediatr Nephrol. 2004;19:478–84.

    Article  PubMed  Google Scholar 

  30. Flynn JT, Mitsnefes M, Pierce C, et al. Blood pressure in children with chronic kidney disease: a report from the Chronic Kidney Disease in Children study. Hypertension. 2008;52:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitsnefes M, Flynn J, Cohn S, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol JASN. 2010;21:137–44.

    Article  CAS  PubMed  Google Scholar 

  32. Lurbe E, Torro I, Alvarez V, et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension. 2005;45:493–8.

    Article  CAS  PubMed  Google Scholar 

  33. McNiece KL, Gupta-Malhotra M, Samuels J, et al. Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension. 2007;50:392–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saland JM, Pierce CB, Mitsnefes MM, et al. Dyslipidemia in children with chronic kidney disease. Kidney Int. 2010;78:1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson AC, Schneider MF, Cox C, et al. Prevalence and correlates of multiple cardiovascular risk factors in children with chronic kidney disease. Clin J Am Soc Nephrol CJASN. 2011;6(12):2759–65.

    Article  CAS  PubMed  Google Scholar 

  36. Wilson AC, Greenbaum LA, Barletta GM, et al. High prevalence of the metabolic syndrome and associated left ventricular hypertrophy in pediatric renal transplant recipients. Pediatr Transplant. 2010;14:52–60.

    Article  PubMed  Google Scholar 

  37. Furth SL, Abraham AG, Jerry-Fluker J, et al. Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol CJASN. 2011;6:2132–40.

    Article  CAS  PubMed  Google Scholar 

  38. Atkinson MA, Martz K, Warady BA, Neu AM. Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS. Pediatr Nephrol. 2010;25:1699–706.

    Article  PubMed  Google Scholar 

  39. Warady BA, Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol. 2003;18:1055–62.

    Article  PubMed  Google Scholar 

  40. Chavers BM, Solid CA, Sinaiko A, et al. Diagnosis of cardiac disease in pediatric end-stage renal disease. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2011;26:1640–5.

    Google Scholar 

  41. Querfeld U. Cardiovascular considerations of pediatric ESRD. In: Warady B, Schaefer F, Fine R, Alexander S, editors. Pediatric dialysis. Dordrecht: Kluwer Academic Publishers; 2004. p. 353–67.

    Chapter  Google Scholar 

  42. Furth SL, Cole SR, Moxey-Mims M, et al. Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol CJASN. 2006;1:1006–15.

    Article  PubMed  Google Scholar 

  43. Querfeld U, Anarat A, Bayazit AK, et al. The Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study: objectives, design, and methodology. Clin J Am Soc Nephrol CJASN. 2010;5:1642–8.

    Article  PubMed  Google Scholar 

  44. Braun J, Oldendorf M, Moshage W, Heidler R, Zeitler E, Luft FC. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis Off J Natl Kidney Found. 1996;27:394–401.

    Article  CAS  Google Scholar 

  45. Civilibal M, Caliskan S, Adaletli I, et al. Coronary artery calcifications in children with end-stage renal disease. Pediatr Nephrol. 2006;21:1426–33.

    Article  PubMed  Google Scholar 

  46. Civilibal M, Caliskan S, Kurugoglu S, et al. Progression of coronary calcification in pediatric chronic kidney disease stage 5. Pediatr Nephrol. 2009;24:555–63.

    Article  PubMed  Google Scholar 

  47. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–83.

    Article  CAS  PubMed  Google Scholar 

  48. Ishitani MB, Milliner DS, Kim DY, et al. Early subclinical coronary artery calcification in young adults who were pediatric kidney transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2005;5:1689–93.

    Article  Google Scholar 

  49. Shroff RC, Donald AE, Hiorns MP, et al. Mineral metabolism and vascular damage in children on dialysis. J Am Soc Nephrol JASN. 2007;18:2996–3003.

    Article  CAS  PubMed  Google Scholar 

  50. Srivaths PR, Silverstein DM, Leung J, Krishnamurthy R, Goldstein SL. Malnutrition-inflammation-coronary calcification in pediatric patients receiving chronic hemodialysis. Hemodial Int Int Symp Home Hemodial. 2010;14:263–9.

    Article  Google Scholar 

  51. Srivaths PR, Goldstein SL, Silverstein DM, Krishnamurthy R, Brewer ED. Elevated FGF 23 and phosphorus are associated with coronary calcification in hemodialysis patients. Pediatr Nephrol. 2011;26:945–51.

    Article  PubMed  Google Scholar 

  52. Srivaths PR, Goldstein SL, Krishnamurthy R, Silverstein DM. High serum phosphorus and FGF 23 levels are associated with progression of coronary calcifications. Pediatr Nephrol. 2014;29:103–9.

    Article  PubMed  Google Scholar 

  53. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23:75–80.

    Article  PubMed  Google Scholar 

  54. Jourdan C, Wuhl E, Litwin M, et al. Normative values for intima-media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23:1707–15.

    Article  CAS  PubMed  Google Scholar 

  55. Doyon A, Kracht D, Bayazit AK, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62:550–6.

    Article  CAS  PubMed  Google Scholar 

  56. Mitsnefes MM, Kimball TR, Kartal J, et al. Cardiac and vascular adaptation in pediatric patients with chronic kidney disease: role of calcium-phosphorus metabolism. J Am Soc Nephrol JASN. 2005;16:2796–803.

    Article  CAS  PubMed  Google Scholar 

  57. Litwin M, Wuhl E, Jourdan C, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol JASN. 2005;16:1494–500.

    Article  PubMed  Google Scholar 

  58. Brady TM, Schneider MF, Flynn JT, et al. Carotid intima-media thickness in children with CKD: results from the CKiD study. Clin J Am Soc Nephrol CJASN. 2012;7(12):1930–7.

    Article  PubMed  Google Scholar 

  59. Shroff R, Egerton M, Bridel M, et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J Am Soc Nephrol JASN. 2008;19:1239–46.

    Article  CAS  PubMed  Google Scholar 

  60. Garcia-Bello JA, Gomez-Diaz RA, Contreras-Rodriguez A, et al. Carotid intima media thickness, oxidative stress, and inflammation in children with chronic kidney disease. Pediatr Nephrol. 2014;29(2):273–81.

    Article  PubMed  Google Scholar 

  61. Chavarria LA, Aguilar-Kitsu A, Rosas P, et al. Intima media thickness in children undergoing dialysis. Pediatr Nephrol. 2012;27:1557–64.

    Article  PubMed  Google Scholar 

  62. Litwin M, Wuhl E, Jourdan C, et al. Evolution of large-vessel arteriopathy in paediatric patients with chronic kidney disease. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2008;23:2552–7.

    Google Scholar 

  63. Kracht D, Shroff R, Baig S, et al. Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents. Am J Hypertens. 2011;24:1294–9.

    Article  PubMed  Google Scholar 

  64. Kis E, Cseprekal O, Kerti A, et al. Measurement of pulse wave velocity in children and young adults: a comparative study using three different devices. Hypertens Res Off J Japan Soc Hypertens. 2011;34:1197–202.

    Article  Google Scholar 

  65. Reusz GS, Shroff R, Kis E, Cseprekal O, Fischer DC, Haffner D. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. J Hypertens. 2013;31:424–5.

    Article  CAS  PubMed  Google Scholar 

  66. Fischer DC, Schreiver C, Heimhalt M, Noerenberg A, Haffner D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hypertens. 2012;30:2159–67.

    Article  CAS  PubMed  Google Scholar 

  67. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.

    Article  CAS  PubMed  Google Scholar 

  68. Covic A, Mardare N, Gusbeth-Tatomir P, et al. Increased arterial stiffness in children on haemodialysis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2006;21:729–35.

    Google Scholar 

  69. Kis E, Cseprekal O, Horvath Z, et al. Pulse wave velocity in end-stage renal disease: influence of age and body dimensions. Pediatr Res. 2008;63:95–8.

    Article  PubMed  Google Scholar 

  70. Li Y, Wang JG, Dolan E, et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension. 2006;47:359–64.

    Article  CAS  PubMed  Google Scholar 

  71. Schillaci G, Parati G, Pirro M, et al. Ambulatory arterial stiffness index is not a specific marker of reduced arterial compliance. Hypertension. 2007;49:986–91.

    Article  CAS  PubMed  Google Scholar 

  72. Vincenti M, von Vigier RO, Wuhl E, Mohaupt MG, Simonetti GD. The ambulatory arterial stiffness index is not affected by night-time blood pressure characteristics. J Hum Hypertens. 2009;23:680–2.

    Article  CAS  PubMed  Google Scholar 

  73. Simonetti GD, Vonv RO, Wuhl E, Mohaupt MG. Ambulatory arterial stiffness index is increased in hypertensive childhood disease. Pediatr Res. 2008;64:303–7.

    Article  PubMed  Google Scholar 

  74. Degi A, Kerti A, Cseprekal O, et al. Ambulatory arterial stiffness index in children after kidney transplantation. Pediatr Transplant. 2013;17:598–604.

    PubMed  Google Scholar 

  75. Mitsnefes MM. Ambulatory arterial stiffness index: is there an additional value to characterize cardiovascular risk in children with kidney transplant? Pediatr Transplant. 2013;17:595–7.

    PubMed  Google Scholar 

  76. Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39:257–65.

    Article  PubMed  Google Scholar 

  77. De Roos NM, Bots ML, Schouten EG, Katan MB. Within-subject variability of flow-mediated vasodilation of the brachial artery in healthy men and women: implications for experimental studies. Ultrasound Med Biol. 2003;29:401–6.

    Article  PubMed  Google Scholar 

  78. Moody WE, Edwards NC, Madhani M, et al. Endothelial dysfunction and cardiovascular disease in early-stage chronic kidney disease: cause or association? Atherosclerosis. 2012;223:86–94.

    Article  CAS  PubMed  Google Scholar 

  79. Yilmaz MI, Stenvinkel P, Sonmez A, et al. Vascular health, systemic inflammation and progressive reduction in kidney function; clinical determinants and impact on cardiovascular outcomes. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2011;26:3537–43.

    Google Scholar 

  80. Wilson AC, Urbina E, Witt SA, Glascock BJ, Kimball TR, Mitsnefes M. Flow-mediated vasodilatation of the brachial artery in children with chronic kidney disease. Pediatr Nephrol. 2008;23:1297–302.

    Article  PubMed  Google Scholar 

  81. Hussein G, Bughdady Y, Kandil ME, Bazaraa HM, Taher H. Doppler assessment of brachial artery flow as a measure of endothelial dysfunction in pediatric chronic renal failure. Pediatr Nephrol. 2008;23:2025–30.

    Article  PubMed  Google Scholar 

  82. Muscheites J, Meyer AA, Drueckler E, et al. Assessment of the cardiovascular system in pediatric chronic kidney disease: a pilot study. Pediatr Nephrol. 2008;23:2233–9.

    Article  PubMed  Google Scholar 

  83. Shanahan CM. Mechanisms of vascular calcification in CKD-evidence for premature ageing? Nat Rev Nephrol. 2013;9:661–70.

    Article  CAS  PubMed  Google Scholar 

  84. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  85. Hartiala O, Magnussen CG, Kajander S, et al. Adolescence risk factors are predictive of coronary artery calcification at middle age: the cardiovascular risk in young Finns study. J Am Coll Cardiol. 2012;60:1364–70.

    Article  PubMed  Google Scholar 

  86. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol JASN. 2004;15:2857–67.

    Article  CAS  PubMed  Google Scholar 

  87. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol JASN. 2013;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  88. Speer MY, Li X, Hiremath PG, Giachelli CM. Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem. 2010;110:935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Siomou E, Stefanidis CJ. FGF-23 in children with CKD: a new player in the development of CKD-mineral and bone disorder. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2012;27:4259–62.

    CAS  Google Scholar 

  90. Hu MC, Kuro-o M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lim K, Lu TS, Molostvov G, et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation. 2012;125:2243–55.

    Article  CAS  PubMed  Google Scholar 

  92. Fang Y, Ginsberg C, Sugatani T, Monier-Faugere MC, Malluche H, Hruska KA. Early chronic kidney disease-mineral bone disorder stimulates vascular calcification. Kidney Int. 2014;85:142–50.

    Article  CAS  PubMed  Google Scholar 

  93. Kuro-o M. Klotho and aging. Biochim Biophys Acta. 1790;2009:1049–58.

    Google Scholar 

  94. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol JASN. 2011;22:124–36.

    Article  CAS  PubMed  Google Scholar 

  95. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jimbo R, Kawakami-Mori F, Mu S, et al. Fibroblast growth factor 23 accelerates phosphate-induced vascular calcification in the absence of Klotho deficiency. Kidney Int. 2013;85(5):1103–11.

    Google Scholar 

  97. Scialla JJ, Lau WL, Reilly MP, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013;83:1159–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zebger-Gong H, Muller D, Diercke M, et al. 1,25-Dihydroxyvitamin D3-induced aortic calcifications in experimental uremia: up-regulation of osteoblast markers, calcium-transporting proteins and osterix. J Hypertens. 2011;29:339–48.

    Article  CAS  PubMed  Google Scholar 

  99. O’Neill WC. Pyrophosphate, alkaline phosphatase, and vascular calcification. Circ Res. 2006;99:e2.

    Article  PubMed  Google Scholar 

  100. Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012;82:1261–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol JASN. 2012;23:1407–15.

    Article  CAS  PubMed  Google Scholar 

  102. Shroff RC, McNair R, Skepper JN, et al. Chronic mineral dysregulation promotes vascular smooth muscle cell adaptation and extracellular matrix calcification. J Am Soc Nephrol JASN. 2010;21:103–12.

    Article  CAS  PubMed  Google Scholar 

  103. Shroff RC, McNair R, Figg N, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118:1748–57.

    Article  CAS  PubMed  Google Scholar 

  104. Yao Y, Bennett BJ, Wang X, et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res. 2010;107:485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schoppet M, Shroff RC, Hofbauer LC, Shanahan CM. Exploring the biology of vascular calcification in chronic kidney disease: what’s circulating? Kidney Int. 2008;73:384–90.

    Article  CAS  PubMed  Google Scholar 

  106. Shroff RC, Shah V, Hiorns MP, et al. The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2008;23:3263–71.

    CAS  Google Scholar 

  107. van Summeren MJ, Hameleers JM, Schurgers LJ, et al. Circulating calcification inhibitors and vascular properties in children after renal transplantation. Pediatr Nephrol. 2008;23:985–93.

    Article  PubMed  Google Scholar 

  108. Heiss A, Eckert T, Aretz A, et al. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. 2008;283:14815–25.

    Article  CAS  PubMed  Google Scholar 

  109. Schaible J, Wigger M, Staude H, et al. Serum fetuin-A and vitamin D in children with mild-to-severe chronic kidney disease: a cross-sectional study. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2012;27:1107–13.

    CAS  Google Scholar 

  110. Muteliefu G, Shimizu H, Enomoto A, Nishijima F, Takahashi M, Niwa T. Indoxyl sulfate promotes vascular smooth muscle cell senescence with upregulation of p53, p21, and prelamin A through oxidative stress. Am J Physiol Cell Physiol. 2012;303:C126–34.

    Article  CAS  PubMed  Google Scholar 

  111. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ Res. 2013;112:e99–109.

    Article  CAS  PubMed  Google Scholar 

  112. Yao Y, Jumabay M, Ly A, Radparvar M, Cubberly MR, Bostrom KI. A role for the endothelium in vascular calcification. Circ Res. 2013;113:495–504.

    Article  CAS  PubMed  Google Scholar 

  113. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA J Am Med Assoc. 2002;288:2015–22.

    Article  Google Scholar 

  114. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Brunet P. Vascular incompetence in dialysis patients – protein-bound uremic toxins and endothelial dysfunction. Semin Dial. 2011;24:327–37.

    Article  PubMed  Google Scholar 

  115. Robinson K, Gupta A, Dennis V, et al. Hyperhomocysteinemia confers an independent increased risk of atherosclerosis in end-stage renal disease and is closely linked to plasma folate and pyridoxine concentrations. Circulation. 1996;94:2743–8.

    Article  CAS  PubMed  Google Scholar 

  116. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ. 2002;325:1202.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jamison RL, Hartigan P, Kaufman JS, et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA J Am Med Assoc. 2007;298:1163–70.

    Article  CAS  Google Scholar 

  118. Toole JF, Malinow MR, Chambless LE, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA J Am Med Assoc. 2004;291:565–75.

    Article  CAS  Google Scholar 

  119. Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. JAMA J Am Med Assoc. 2006;296:2720–6.

    Article  CAS  Google Scholar 

  120. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med. 2009;60:39–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vallance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–5.

    Article  CAS  PubMed  Google Scholar 

  122. Wilcox CS. Asymmetric dimethylarginine and reactive oxygen species: unwelcome twin visitors to the cardiovascular and kidney disease tables. Hypertension. 2012;59:375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kielstein JT, Impraim B, Simmel S, et al. Cardiovascular effects of systemic nitric oxide synthase inhibition with asymmetrical dimethylarginine in humans. Circulation. 2004;109:172–7.

    Article  CAS  PubMed  Google Scholar 

  124. H-CK MD. Urinary arginine methylation index associated with ambulatory blood pressure abnormalities in children with chronic kidney disease. J Am Soc Hypertens. 2012;6:385–92.

    Article  CAS  Google Scholar 

  125. Liabeuf S, Barreto DV, Barreto FC, et al. Free p-cresylsulphate is a predictor of mortality in patients at different stages of chronic kidney disease. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2010;25:1183–91.

    CAS  Google Scholar 

  126. Barreto FC, Barreto DV, Liabeuf S, et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol CJASN. 2009;4:1551–8.

    Article  CAS  PubMed  Google Scholar 

  127. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling – concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–82.

    Article  CAS  PubMed  Google Scholar 

  128. Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79:215–62.

    CAS  PubMed  Google Scholar 

  129. London GM, Parfrey PS. Cardiac disease in chronic uremia: pathogenesis. Adv Ren Replace Ther. 1997;4:194–211.

    CAS  PubMed  Google Scholar 

  130. Guerin AP, Adda H, London GM, Marchais SJ. Cardiovascular disease in renal failure. Minerva Urol Nefrol. 2004;56:279–88.

    CAS  PubMed  Google Scholar 

  131. Seta Y, Shan K, Bozkurt B, Oral H, Mann DL. Basic mechanisms in heart failure: the cytokine hypothesis. J Card Fail. 1996;2:243–9.

    Article  CAS  PubMed  Google Scholar 

  132. Krum H. Tumor necrosis factor-alpha blockade as a therapeutic strategy in heart failure (RENEWAL and ATTACH): unsuccessful, to be specific. J Card Fail. 2002;8:365–8.

    Article  PubMed  Google Scholar 

  133. Matteucci MC, Wuhl E, Picca S, et al. Left ventricular geometry in children with mild to moderate chronic renal insufficiency. J Am Soc Nephrol JASN. 2006;17:218–26.

    Article  PubMed  Google Scholar 

  134. Bakkaloglu SA, Borzych D, Soo Ha I, et al. Cardiac geometry in children receiving chronic peritoneal dialysis: findings from the international pediatric peritoneal dialysis network (IPPN) registry. Clin J Am Soc Nephrol CJASN. 2011;6:1926–33.

    Article  PubMed  Google Scholar 

  135. Lo MM, Salisbury S, Scherer PE, Furth SL, Warady BA, Mitsnefes MM. Serum adiponectin complexes and cardiovascular risk in children with chronic kidney disease. Pediatr Nephrol. 2011;26:2009–17.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Amann K, Wiest G, Zimmer G, Gretz N, Ritz E, Mall G. Reduced capillary density in the myocardium of uremic rats – a stereological study. Kidney Int. 1992;42:1079–85.

    Article  CAS  PubMed  Google Scholar 

  138. Tyralla K, Amann K. Morphology of the heart and arteries in renal failure. Kidney Int Suppl. 2003;63:S80–3.

    Article  Google Scholar 

  139. Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:1692–700.

    CAS  Google Scholar 

  141. Bikman BT, Summers SA. Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest. 2011;121:4222–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grosch S, Schiffmann S, Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res. 2012;51:50–62.

    Article  PubMed  CAS  Google Scholar 

  143. Greaves SC, Gamble GD, Collins JF, Whalley GA, Sharpe DN. Determinants of left ventricular hypertrophy and systolic dysfunction in chronic renal failure. Am J Kidney Dis Off J Natl Kidney Found. 1994;24:768–76.

    Article  CAS  Google Scholar 

  144. Levin A, Singer J, Thompson CR, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis Off J Natl Kidney Found. 1996;27:347–54.

    Article  CAS  Google Scholar 

  145. Levin A, Thompson CR, Ethier J, et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis Off J Natl Kidney Found. 1999;34:125–34.

    Article  CAS  Google Scholar 

  146. Tucker B, Fabbian F, Giles M, Johnston A, Baker LR. Reduction of left ventricular mass index with blood pressure reduction in chronic renal failure. Clin Nephrol. 1999;52:377–82.

    CAS  PubMed  Google Scholar 

  147. Tucker B, Fabbian F, Giles M, Thuraisingham RC, Raine AE, Baker LR. Left ventricular hypertrophy and ambulatory blood pressure monitoring in chronic renal failure. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 1997;12:724–8.

    CAS  Google Scholar 

  148. Foley RN, Parfrey PS, Harnett JD, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92.

    Article  CAS  PubMed  Google Scholar 

  149. Paoletti E, Bellino D, Cassottana P, Rolla D, Cannella G. Left ventricular hypertrophy in nondiabetic predialysis CKD. Am J Kidney Dis Off J Natl Kidney Found. 2005;46:320–7.

    Article  Google Scholar 

  150. Silberberg JS, Barre PE, Prichard SS, Sniderman AD. Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 1989;36:286–90.

    Article  CAS  PubMed  Google Scholar 

  151. Foley RN, Parfrey PS, Harnett JD, Kent GM, Murray DC, Barre PE. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol JASN. 1995;5:2024–31.

    CAS  PubMed  Google Scholar 

  152. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 1977;55:613–8.

    Article  CAS  PubMed  Google Scholar 

  153. de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20:1251–60.

    Article  PubMed  Google Scholar 

  154. Daniels SR, Meyer RA, Liang YC, Bove KE. Echocardiographically determined left ventricular mass index in normal children, adolescents and young adults. J Am Coll Cardiol. 1988;12:703–8.

    Article  CAS  PubMed  Google Scholar 

  155. de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25:1056–62.

    Article  PubMed  Google Scholar 

  156. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.

    Google Scholar 

  157. Khoury PR, Mitsnefes M, Daniels SR, Kimball TR. Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22:709–14.

    Article  Google Scholar 

  158. Khoury PR, Mitsnefes M, Daniels ST, Kimball TR. Age-specific reference intervals for indexed left ventricular mass children. J Amer Soc Echocardiography. 2009;22(6):709–14.

    Article  Google Scholar 

  159. Foster BJ, Mackie AS, Mitsnefes M, Ali H, Mamber S, Colan SD. A novel method of expressing left ventricular mass relative to body size in children. Circulation. 2008;117:2769–75.

    Article  PubMed  Google Scholar 

  160. Borzych D, Bakkaloglu SA, Zaritsky J, et al. Defining left ventricular hypertrophy in children on peritoneal dialysis. Clin J Am Soc Nephrol CJASN. 2011;6:1934–43.

    Article  PubMed  Google Scholar 

  161. Johnstone LM, Jones CL, Grigg LE, Wilkinson JL, Walker RG, Powell HR. Left ventricular abnormalities in children, adolescents and young adults with renal disease. Kidney Int. 1996;50:998–1006.

    Article  CAS  PubMed  Google Scholar 

  162. Mitsnefes MM, Kimball TR, Witt SA, Glascock BJ, Khoury PR, Daniels SR. Left ventricular mass and systolic performance in pediatric patients with chronic renal failure. Circulation. 2003;107:864–8.

    Article  PubMed  Google Scholar 

  163. Mitsnefes MM, Kimball TR, Kartal J, et al. Progression of left ventricular hypertrophy in children with early chronic kidney disease: 2-year follow-up study. J Pediatr. 2006;149:671–5.

    Article  PubMed  Google Scholar 

  164. Douglas PS, Katz SE, Weinberg EO, Chen MH, Bishop SP, Lorell BH. Hypertrophic remodeling: gender differences in the early response to left ventricular pressure overload. J Am Coll Cardiol. 1998;32:1118–25.

    Article  CAS  PubMed  Google Scholar 

  165. Peter I, Shearman AM, Vasan RS, et al. Association of estrogen receptor beta gene polymorphisms with left ventricular mass and wall thickness in women. Am J Hypertens. 2005;18:1388–95.

    Article  CAS  PubMed  Google Scholar 

  166. Leibowitz D, Dresner-Pollak R, Dvir S, Rokach A, Reznik L, Pollak A. Association of an estrogen receptor-alpha gene polymorphism with left ventricular mass. Blood Press. 2006;15:45–50.

    Article  CAS  PubMed  Google Scholar 

  167. Kupferman JC, Aronson Friedman L, Cox C, et al. BP control and left ventricular hypertrophy regression in children with CKD. J Am Soc Nephrol JASN. 2013;25(1):167–74.

    Google Scholar 

  168. Mitsnefes MM, Daniels SR, Schwartz SM, Khoury P, Strife CF. Changes in left ventricular mass in children and adolescents during chronic dialysis. Pediatr Nephrol. 2001;16:318–23.

    Article  CAS  PubMed  Google Scholar 

  169. Ulinski T, Genty J, Viau C, Tillous-Borde I, Deschenes G. Reduction of left ventricular hypertrophy in children undergoing hemodialysis. Pediatr Nephrol. 2006;21:1171–8.

    Article  PubMed  Google Scholar 

  170. Morris KP, Skinner JR, Wren C, Hunter S, Coulthard MG. Cardiac abnormalities in end stage renal failure and anaemia. Arch Dis Child. 1993;68:637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. O’Regan S, Matina D, Ducharme G, Davignon A. Echocardiographic assessment of cardiac function in children with chronic renal failure. Kidney Int Suppl. 1983;15:S77–82.

    PubMed  Google Scholar 

  172. Palcoux JB, Palcoux MC, Jouan JP, Gourgand JM, Cassagnes J, Malpuech G. Echocardiographic patterns in infants and children with chronic renal failure. Int J Pediatr Nephrol. 1982;3:311–4.

    CAS  PubMed  Google Scholar 

  173. Drukker A, Urbach J, Glaser J. Hypertrophic cardiomyopathy in children with end-stage renal disease and hypertension. Proc Eur Dial Transplant Assoc. 1981;18:542–7.

    CAS  PubMed  Google Scholar 

  174. Litwin M, Grenda R, Prokurat S, et al. Patient survival and causes of death on hemodialysis and peritoneal dialysis – single-center study. Pediatr Nephrol. 2001;16:996–1001.

    Article  CAS  PubMed  Google Scholar 

  175. Matteucci MC, Giordano U, Calzolari A, Turchetta A, Santilli A, Rizzoni G. Left ventricular hypertrophy, treadmill tests, and 24-hour blood pressure in pediatric transplant patients. Kidney Int. 1999;56:1566–70.

    Article  CAS  PubMed  Google Scholar 

  176. Morgan H, Khan I, Hashmi A, Hebert D, McCrindle BW, Balfe JW. Ambulatory blood pressure monitoring after renal transplantation in children. Pediatr Nephrol. 2001;16:843–7.

    Article  CAS  PubMed  Google Scholar 

  177. Mitsnefes MM, Schwartz SM, Daniels SR, Kimball TR, Khoury P, Strife CF. Changes in left ventricular mass index in children and adolescents after renal transplantation. Pediatr Transplant. 2001;5:279–84.

    Article  CAS  PubMed  Google Scholar 

  178. El-Husseini AA, Sheashaa HA, Hassan NA, El-Demerdash FM, Sobh MA, Ghoneim MA. Echocardiographic changes and risk factors for left ventricular hypertrophy in children and adolescents after renal transplantation. Pediatr Transplant. 2004;8:249–54.

    Article  PubMed  Google Scholar 

  179. Kitzmueller E, Vecsei A, Pichler J, et al. Changes of blood pressure and left ventricular mass in pediatric renal transplantation. Pediatr Nephrol. 2004;19:1385–9.

    Article  PubMed  Google Scholar 

  180. Englund M, Berg U, Tyden G. A longitudinal study of children who received renal transplants 10–20 years ago. Transplantation. 2003;76:311–8.

    Article  PubMed  Google Scholar 

  181. Balzano R, Lindblad YT, Vavilis G, Jogestrand T, Berg UB, Krmar RT. Use of annual ABPM, and repeated carotid scan and echocardiography to monitor cardiovascular health over nine yr in pediatric and young adult renal transplant recipients. Pediatr Transplant. 2011;15:635–41.

    Article  PubMed  Google Scholar 

  182. Colan SD, Sanders SP, Ingelfinger JR, Harmon W. Left ventricular mechanics and contractile state in children and young adults with end-stage renal disease: effect of dialysis and renal transplantation. J Am Coll Cardiol. 1987;10:1085–94.

    Article  CAS  PubMed  Google Scholar 

  183. Goren A, Glaser J, Drukker A. Diastolic function in children and adolescents on dialysis and after kidney transplantation: an echocardiographic assessment. Pediatr Nephrol. 1993;7:725–8.

    Article  CAS  PubMed  Google Scholar 

  184. Colan SD, Borow KM, Neumann A. Left ventricular end-systolic wall stress-velocity of fiber shortening relation: a load-independent index of myocardial contractility. J Am Coll Cardiol. 1984;4:715–24.

    Article  CAS  PubMed  Google Scholar 

  185. Chinali M, de Simone G, Matteucci MC, et al. Reduced systolic myocardial function in children with chronic renal insufficiency. J Am Soc Nephrol JASN. 2007;18:593–8.

    Article  PubMed  Google Scholar 

  186. de Simone G, Devereux RB, Roman MJ, et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol. 1994;23:1444–51.

    Article  PubMed  Google Scholar 

  187. de Simone G, Devereux RB, Celentano A, Roman MJ. Left ventricular chamber and wall mechanics in the presence of concentric geometry. J Hypertens. 1999;17:1001–6.

    Article  PubMed  Google Scholar 

  188. Mitsnefes MM, Kimball TR, Border WL, et al. Impaired left ventricular diastolic function in children with chronic renal failure. Kidney Int. 2004;65:1461–6.

    Article  PubMed  Google Scholar 

  189. Mitsnefes MM, Kimball TR, Border WL, et al. Abnormal cardiac function in children after renal transplantation. Am J Kidney Dis Off J Natl Kidney Found. 2004;43:721–6.

    Article  Google Scholar 

  190. Hothi DK, Rees L, Marek J, Burton J, McIntyre CW. Pediatric myocardial stunning underscores the cardiac toxicity of conventional hemodialysis treatments. Clin J Am Soc Nephrol CJASN. 2009;4:790–7.

    Article  CAS  PubMed  Google Scholar 

  191. Hothi DK, Rees L, McIntyre CW, Marek J. Hemodialysis-induced acute myocardial dyssynchronous impairment in children. Nephron Clin Pract. 2013;123:83–92.

    Article  PubMed  Google Scholar 

  192. Malatesta-Muncher R, Wansapura J, Taylor M, Lindquist D, Hor K, Mitsnefes M. Early cardiac dysfunction in pediatric patients on maintenance dialysis and post kidney transplant. Pediatr Nephrol. 2012;27:1157–64.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Fadrowski JJ, Frankenfield D, Amaral S, et al. Children on long-term dialysis in the United States: findings from the 2005 ESRD clinical performance measures project. Am J Kidney Dis Off J Natl Kidney Found. 2007;50:958–66.

    Article  CAS  Google Scholar 

  194. Fischbach M, Terzic J, Laugel V, et al. Daily on-line haemodiafiltration: a pilot trial in children. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2004;19:2360–7.

    Google Scholar 

  195. Hoppe A, von Puttkamer C, Linke U, et al. A hospital-based intermittent nocturnal hemodialysis program for children and adolescents. J Pediatr. 2011;158:95–9. 9 e1.

    Article  PubMed  Google Scholar 

  196. Fischbach M, Terzic J, Menouer S, Dheu C, Seuge L, Zalosczic A. Daily on line haemodiafiltration promotes catch-up growth in children on chronic dialysis. Nephrol Dial Transplant Off Publ Eur Dial Transplant Assoc Eur Ren Assoc. 2010;25:867–73.

    CAS  Google Scholar 

  197. Lacson Jr E, Lazarus M. Dialysis time: does it matter? A reappraisal of existing literature. Curr Opin Nephrol Hypertens. 2011;20:189–94.

    Article  PubMed  Google Scholar 

  198. Taler SJ, Agarwal R, Bakris GL, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis Off J Natl Kidney Found. 2013;62:201–13.

    Article  Google Scholar 

  199. Wuhl E, Trivelli A, Picca S, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361:1639–50.

    Article  PubMed  Google Scholar 

  200. Lurbe E, Cifkova R, Cruickshank JK, et al. Management of high blood pressure in children and adolescents: recommendations of the European Society of Hypertension. J Hypertens. 2009;27:1719–42.

    Article  CAS  PubMed  Google Scholar 

  201. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis Off J Natl Kidney Found. 2005;45:S1–153.

    Google Scholar 

  202. KDIGO. Clinical practice guideline for lipid management in chronic kidney disease. Kidney Int Suppl. 2013;3:259–305.

    Article  Google Scholar 

  203. National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;Suppl 5:S213–S56.

    Google Scholar 

  204. Hakim RM, Lowrie E. Obesity and mortality in ESRD: is it good to be fat? Kidney Int. 1999;55:1580–1.

    Article  CAS  PubMed  Google Scholar 

  205. Nishizawa Y, Shoji T, Ishimura E. Body composition and cardiovascular risk in hemodialysis patients. J Ren Nutr Off J Counc Ren Nutr Natl Kidney Found. 2006;16:241–4.

    Article  Google Scholar 

  206. Goldstein SL, Montgomery LR. A pilot study of twice-weekly exercise during hemodialysis in children. Pediatr Nephrol. 2009;24:833–9.

    Article  PubMed  Google Scholar 

  207. Gunta SS, Mak RH. Is obesity a risk factor for chronic kidney disease in children? Pediatr Nephrol. 2013;28:1949–56.

    Article  PubMed  Google Scholar 

  208. Inge TH, Zeller MH, Jenkins TM, et al. Perioperative outcomes of adolescents undergoing bariatric surgery: the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) Study. JAMA Pediatr. 2014;168(1):47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Vivante A, Golan E, Tzur D, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172:1644–50.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Mitsnefes MM, Khoury P, McEnery PT. Body mass index and allograft function in pediatric renal transplantation. Pediatr Nephrol. 2002;17:535–9.

    Article  PubMed  Google Scholar 

  211. Hanevold CD, Ho PL, Talley L, Mitsnefes MM. Obesity and renal transplant outcome: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatrics. 2005;115:352–6.

    Article  PubMed  Google Scholar 

  212. Block GA. Prevalence and clinical consequences of elevated Ca x P product in hemodialysis patients. Clin Nephrol. 2000;54:318–24.

    CAS  PubMed  Google Scholar 

  213. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2004;42(Suppl 3):S1–S201.

    Google Scholar 

  214. Hogg RJ, Furth S, Lemley KV, et al. National Kidney Foundation’s Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics. 2003;111:1416–21.

    Article  PubMed  Google Scholar 

  215. Klaus G, Watson A, Edefonti A, et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol. 2006;21:151–9.

    Article  CAS  PubMed  Google Scholar 

  216. Martin KJ, Gonzalez EA. Vitamin D analogues for the management of secondary hyperparathyroidism. Am J Kidney Dis Off J Natl Kidney Found. 2001;38:S34–40.

    Article  CAS  Google Scholar 

  217. Lopez I, Aguilera-Tejero E, Mendoza FJ, et al. Calcimimetic R-568 decreases extraosseous calcifications in uremic rats treated with calcitriol. J Am Soc Nephrol JASN. 2006;17:795–804.

    Article  CAS  PubMed  Google Scholar 

  218. Querfeld U. The therapeutic potential of novel phosphate binders. Pediatr Nephrol. 2005;20:389–92.

    Article  PubMed  Google Scholar 

  219. Pieper AK, Haffner D, Hoppe B, et al. A randomized crossover trial comparing sevelamer with calcium acetate in children with CKD. Am J Kidney Dis Off J Natl Kidney Found. 2006;47:625–35.

    Article  CAS  Google Scholar 

  220. Salusky IB, Goodman WG, Sahney S, et al. Sevelamer controls parathyroid hormone-induced bone disease as efficiently as calcium carbonate without increasing serum calcium levels during therapy with active vitamin D sterols. J Am Soc Nephrol JASN. 2005;16:2501–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Dr. Uwe Querfeld for his contribution to this chapter in the first edition of the textbook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Mitsnefes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doyon, A., Mitsnefes, M. (2016). Cardiovascular Disease in Pediatric Chronic Kidney Disease. In: Geary, D., Schaefer, F. (eds) Pediatric Kidney Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52972-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52972-0_59

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52970-6

  • Online ISBN: 978-3-662-52972-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics