Skip to main content

Advertisement

Log in

Contemporary management of phosphorus retention in chronic kidney disease: a review

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Hyperphosphatemia is the most common metabolic complications of end-stage kidney disease (ESKD). Large observational studies have identified hyperphosphatemia as an independent risk factor for cardiovascular disease and mortality in dialysis patients and subsequent studies found that subtle increases in serum phosphate levels even within the normal range are also associated with increased risk for death in predialysis and non-kidney disease population. On the basis of these results, current national practice guidelines advocate more aggressive treatment of hyperphosphatemia to lower serum phosphate targets than in the past . Treatment of hyperphosphatemia requires to strict management through dietary restriction, oral phosphate binders, and dialysis. Calcium-based phosphate binders have low cost and widespread use but cause vascular calcification and hypercalcemia. Non-calcium-based phosphate binders are effective but expensive. Bixalomer is a new Ca-free, metal-free, potent phosphate binder, non-hydrochloride, and non-absorptive polymer, which improves metabolic acidosis. FGF-23 appears as a promising target for novel therapeutic approaches to improve clinical outcomes of CKD patients. This review focuses on novel therapeutic approaches dealing with hyperphosphatemia in chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goldstein-Fuchs J, Fouque D. The ubiquitous nature and elusive role of phosphorus and vascular calcification. Am J Kidney Dis. 2009;2009(53):363–5.

    Article  Google Scholar 

  2. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75(9):890–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hutchison AJ. Oral phosphate binders. Kidney Int. 2009;75(9):906–14.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman EA. Consequences and management of hyperphosphatemia in patients with renal insufficiency. Kidney Int Suppl. 2005;95:S1–7.

    Article  PubMed  Google Scholar 

  5. Hofman-Bang J, Martusevicience G, Santini MA, Olgaard KA, Levin E. Increased parathyroid expression of klotho in uremic rats. Kidney Int. 2010;78(11):1119–27.

    Article  CAS  PubMed  Google Scholar 

  6. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF-23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shalhoub V, Shatzen EM, Ward SC, Davis J, Stevens J, Bi V, et al. FGF-23 neutralization improves chronic kidney disease-associated hyperthyroidism yet increases mortality. J Clin Invest. 2012;122(7):2543–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Yoda K, Imanishi Y, Yoda M, Mishima T, et al. Impaired response of FGF-23 to oral phosphate in patients with type 2 diabetes: a possible mechanism of atherosclerosis. J Clin Endocrinol Metab. 2012;97(11):1737–44.

    Google Scholar 

  9. Galassi A, Cupisti A, Santoro A, Cozzolino A. Phosphate balance in ESRD: diet, dialysis and binders against the low evident masked pool. J Nephrol. 2014. doi:10.1007/s40620-014-0142-4.

    PubMed  Google Scholar 

  10. Ritz E, Hahn K, Ketteler M, kuhlmann MK, J Mann. Phosphate additives in food—a health risk. Dtsch Arztebl Int. 2012;109(4):49–55.

    PubMed Central  PubMed  Google Scholar 

  11. Ketteler M. Phosphate metabolism in CKD stages 3–5: dietary and pharmacological control. Int J Nephrol. 2011;2011:970245. doi:10.4061/2011/970245.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Guida B, Piccoli A, Trio R, Laccetti R, Nastasi A, Paglione A, et al. Dietary phosphate restriction in dialysis patients: a new approach for the treatment of hyperphosphatemis. Nutr Metab Cardiovasc Dis. 2011;21(11):879–84.

    Article  CAS  PubMed  Google Scholar 

  13. CS Shinaberger, Greenland S, Kopple JD, Van Wyck D, Mehrotra R, Kovesdy CP. Is controlling phosphorus by decreasing dietary protein intake beneficial or harmful in persons with chronic kidney disease? Am J Clin Nutr. 2008;88(6):1511–8.

    Article  Google Scholar 

  14. Carrero JJ, Cozzolino M. Nutritional therapy, phosphate control and renal protection. Nephron clin pract. 2014;126(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Covic A, Rastogi A. Hyperphosphatemia in patients with ESRD: assessing the current evidence linking outcomes with treatment adherence. BMC Nephrol. 2013;14:153.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Marks J, Churchill LJ, Srai SK, Biber J, Murer H, Jaeqer P, et al. Intestinal phosphate absorption in a model of chronic renal failure. Kidney Int. 2007;72(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  17. Spiegel DM, Brady K. Calcium balance in normal individuals and in patients with chronic kidney disease on low and high calcium diets. Kidney Int. 2012;81(11):1112–22.

    Article  Google Scholar 

  18. London G, Coyne D, Hruska K, Malluche HH, Martin KJ. The new kidney disease: improving global outcomes (KDIGO) guidelines—expert clinical focus on bone and vascular calcification. Clin Nephrol. 2010;74(6):423–32.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Sheikh MS, Maquire JA, Emmett M, Santa ana CA, Nicar MJ, Schiller LR, et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest. 1989;83(1):66–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Cozzolino M, Urena-Torres P, Vervloet MG, Brandenburg V, Bover J, Goldsmith D, et al. Is chronic kidney disease-mineral bone disorder (CKD-MBD) really a syndrome? Nephrol Dial Transplant. 2014;29(10):1815–20.

    Article  PubMed  Google Scholar 

  21. de Francisco MAL, Rodriquez M. Magnesium—its role in CKD. Nefrologia. 2013;33(3):389–99.

    Google Scholar 

  22. Liabeuf S, Okazaki H, Desjardines L, Fliser D, Goldsmith D, Covic A, et al. Vascular calcification in chronic kidney disease: are biomarkers useful for probing the pathobiology and the health risks of this process in the clinical scenario? Nephrol Dial Transplant. 2014;29(7):1275–84.

    Article  CAS  PubMed  Google Scholar 

  23. Tzanakis I, Pras A, kounali D, Mamali V, Kartsonakis V, Mayopoulou-Symvoulidou D, et al. Mitral annular calcification in hemodialysis patients: possible protective role of magnesium. Nephrol Dial Transplant. 1997;12(9):2036–7.

    Article  CAS  PubMed  Google Scholar 

  24. Ishimura E, Okunu S, Kitatani K, Tsuchida T, Yamakawa T, Shioi A, et al. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin Nephrol. 2007;68(4):222–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sakagushi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, IseKi K, et al. Magnesium modifies the cardiovascular mortality risk associated with hyperphosphatemia in patients undergoing hemodialysis: a cohort study. PLoS One. 2014;9(12):e116273. doi:10.1371/journal.pone.116273.

    Article  Google Scholar 

  26. Hutchison AJ, Smith CP, Brenchley PE. Pharmacology, efficacy and safety of oral phosphate binders. Nat Rev Nephrol. 2011;7(6):578–89.

    Article  CAS  PubMed  Google Scholar 

  27. Guillot AP, Hood VL, Runge CF, Gennari FJ. The use of magnesium-containing phosphate binders in patients with end-stage renal disease on maintenance hemodialysis. Nephron. 1982;30(2):114–7.

    Article  CAS  PubMed  Google Scholar 

  28. Tzanakis IP, PaPadaki AN, Wei M, Kagia S, Spadidakis VV, Kallivretakis NE, et al. Magnesium carbonate for phosphate control in patients on hemodialysis. A randomized controlled trial. Int Urol Nephrol. 2008;40(1):193–201.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Covic A, Passlick-Deetjen J, Kroczak M, Buschges-Seraphin B, Ghenu A, Ponce P, et al. A comparison of calcium acetate/magnesium carbonate and sevelamer hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a collected, randomized study. Nephrol Dial Transplant. 2013;28(9):2383–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Brandenburg VM, Floege J. Adynamic bone disease-bone and beyond. Nephrol Dial Transplant Plus. 2008;1(3):135–47. doi:10.1093/ndtplus/sfn040.

    Google Scholar 

  31. Ferreira A, Frazao MJ, Monier-Faugere MC, Gil C, Galvao J, Oliveira C, et al. Effects of Sevelamer HCL and ca carbonate on renal osteodystrophy in hemodialysis patients. Am Soc Nephrol. 2008;19(2):405–12. doi:10.1681/ASN.2006101089.

    Article  CAS  Google Scholar 

  32. Perianayagam MC, Bertrand LJ. Endotoxin-binding affinity of Sevelamer HCL. Am J Nephrol. 2008;28(5):802–7. doi:10.1159/000135691.

    Article  CAS  PubMed  Google Scholar 

  33. Goto S, Fujii H, Kim JI, Fukagawa M. Homocysteine and folic acid levels in hemodialysis patients treated with Sevelamer hydrochloride. Clin Nephrol. 2010;73(6):420–5.

    Article  CAS  PubMed  Google Scholar 

  34. Ketteler M, Rix M, Fan S, Pritchard N, Oestergaard O, Chasan-Taber S, et al. Efficacy and tolerability of Sevelamer carbonate in hyperphosphatemia patients who have chronic kidney disease and are not on dialysis: mineral metabolism/bone disease. Clin J Am Soc Nephrol. 2008;3(4):1125–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Savica V, Santoro D, Monardo P, Mallamace A, Bellinghieri G. Sevelamer carbonate in the treatment of hyperphosphatemia in patients with chronic kidney disease on hemodialysis. Ther Clin Risk Manag. 2008;4(4):821–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Sanai T, Tada H, Ono T, Fukumitsu T. Phosphate binders and metabolic acidosis in patients with undergoing maintenance hemodialysis-sevelamer hydrochloride, calcium carbonate, and Bixalomer. Hemodial Int. 2014. doi:10.1111/hdi.12188.

    PubMed  Google Scholar 

  37. Hutchison AJ, Laville M. On behalf of the SPD405-313 lanthanum study group. Switching to lanthanum carbonate monotherapy provides effective phosphate control with a low tablet burden. Nephrol Dial Transplant. 2008;23(11):3677–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kazama JJ. Is lanthanum carbonate a safe drug? Clin Calcium. 2009;19(2):224–8.

    CAS  PubMed  Google Scholar 

  39. Patrick CD, Goce BS, Aleksander S, Alastair H, Tony JF, Sylvie S, et al. A multicenter study on the effects of lanthanum carbonate (fosrenol) and calcium carbonate on renal bone disease in dialysis patients. Kidney Int Suppl. 2003;85:S73–8.

    Google Scholar 

  40. Sprague SM. A comparative review of the efficacy and safety of established pi binders. Calcium, Sevelamer and lanthanum carbonate. Curr Med Res Opin. 2007;23(12):3167–75.

    Article  CAS  PubMed  Google Scholar 

  41. Torregrosa PV. Lanthanum carbonate in clinical practice. Nefrologia. 2008;28(Suppl 5):11–4.

    Google Scholar 

  42. Hutchison AJ, Barnett ME, Krause R, Kwan JT, Siami GA. Long-term efficacy and safety profile of lanthanum carbonate: results for up to 6 years of treatment. Nephron Clin Pract. 2008;110(1):c15–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kay J. Gadolinium and nephrogenic systemic fibrosis: the evidence of things not seen. Cleve clin J Med. 2008;75(2):112–7.

    Article  PubMed  Google Scholar 

  44. Brambilla S, Vallaperta S, Graziani G, Montanelli A. Gadolinium and lanthanum: an iatrogenic transmetallation? Clin Biochem. 2008;41(13):1029–33.

    Article  CAS  PubMed  Google Scholar 

  45. John TD, Peter GB, Todd SI. Handbook of dialysis. Philadelphia: LWW; 2007. p. 594.

    Google Scholar 

  46. Leonard O, Spaak J, Goldsmith D. Regression of vascular calcification in chronic kidney disease-feasible or fantasy? A review of the clinical evidence. Br J Clin Pharmacol. 2013;76(4):560–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Evenepoel P. Calcimimetics in chronic kidney disease: evidence, opportunities and challenges. Kidney Int. 2008;74(3):265–75.

    Article  CAS  PubMed  Google Scholar 

  48. Grzegorzewska AE, Niepolski L. Calcimimetic drugs in stage 3–5 chronic kidney disease. Pol Merkur Lekareski. 2012;32(190):260–2.

    Google Scholar 

  49. Sabbagh Y, Schiavi SC. Role of NPT2b in health and chronic kidney disease. Curr Opin Nephrol Hypertens. 2014;23(4):377–84.

    Article  CAS  PubMed  Google Scholar 

  50. Lenglet A, Liabeuf S, Guffroy P, Brazier M, Massay ZA. Use of nicotinamide to treat hyperphosphatemia in dialysis patients. Drugs R D. 2013;13(3):165–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Takahashi Y, Tanaka A, Nakamura T, Fukuwatari T, Shibata K, Shimada N, et al. Nicotinamide suppresses hyperphosphatemia in hemodialysis patients. Kidney Int. 2004;65(3):1099–104.

    Article  CAS  PubMed  Google Scholar 

  52. Tunara S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, et al. PUMA-AG and HM74A are receptors for nicotinic acid and mediate its anti lipolytic effect. Nat Med. 2003;9(3):352–5.

    Article  Google Scholar 

  53. Marshall BE, Donald BH, Kathryn BD, Garge R, Johnson C, Egan D, et al. Effects of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial disease multiple intervention trial. JAMA. 2000;284(10):1263–70.

    Article  Google Scholar 

  54. Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium phosphate co-transporter gene expression and phosphate uptake. Am J Clin Nutr. 2008;87(4):1028–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Sampathkumar K, Selvam M, Sooraj YS, Gowthaman S, Ajeshkumar RN. Extended release nicotinic acid—a novel oral agent for phosphate control. Int Urol Nephrol. 2006;38(1):171–4.

    Article  CAS  PubMed  Google Scholar 

  56. Shin S, Lee S. Niacin as a drug repositioning candidate for hyperphosphatemia management in dialysis patients. Ther Clin Risk Manag. 2014;10:875–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Nastou D, Fernandez-fernandez B, Elewa U, Gonzalez-Espinoza L, Gonzalez-Parra E, Sanches-Nino MD, et al. Next-generation phosphate binders: focus on iron-based binders. Drugs. 2014;74(8):863–77.

    Article  CAS  PubMed  Google Scholar 

  58. Wuthrich RP, Chonchol M, Covic A, Gillard S, Chong E, Tumlin JA, et al. Randomized clinical trial of the iron-based phosphate binder PA21 in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8:280–9.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Locatelli F, Dimkovic N, Pontoriero G, Spasovski G, Pljesa S, Kostic S, et al. Effect of MCI-196 on serum phosphate and cholesterol levels in hemodialysis patients with hyperphosphatemia: a double-blind, randomized, placebo-controlled study. Nephrol Dial Transplant. 2010;25(2):574–81.

    Article  CAS  PubMed  Google Scholar 

  60. Locatelli F, Spasovski G, Dimkovic N, Wanner C, Dellanna F, Pontoriero G. The effects of Colestilan versus placebo and sevelamer in patients with CKD 5D and hyperphosphatemia: a 1-year prospective randomized study. Nephrol Dial Transplant. 2014;29(5):1061–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Eknoyan G. Salivary phosphorus binding: a novel approach to control hyperphosphatemia. J Am Soc Nephrol. 2009;20:460–2.

    Article  PubMed  Google Scholar 

  62. Savica V, Calo LA, Monardo P, Davis PA, Granata A, Santoro D, et al. Salivary phosphate-binding chewing gum reduces hyperphosphatemia in dialysis patients. J Am Soc Nephrol. 2009;20:639–44.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Akizawa T, Tsuruta Y, Okada Y, Miyauchi Y, Suda A, Kasahara H, et al. Effect of Chitosan chewing gum on reducing serum phosphorus in hemodialysis patients: a multi-center, randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2014;25(15):98.

    Article  Google Scholar 

  64. Alessandro DC, Piccoli GB, Cupisti A. The “phosphorus pyramid”: a visual tool for dietary phosphate management in dialysis and CKD patients. BMC Nephrol. 2015;16(1):9 (20).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Cannata-Andía J, Torregrosa JV. Spanish nephrologists and the management of mineral and bone metabolism disorders in chronic kidney disease. Nefrologia. 2014;34(2):175–88.

    PubMed  Google Scholar 

  66. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, et al. Effect of calcium based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382(9900):1268–77.

    Article  CAS  PubMed  Google Scholar 

  67. Goto S, Komaba H, Moriwaki K, Fujimori A, Shibuya K, Nishioka M, et al. Clinical efficacy and costeffectiveness of lanthanum carbonate as second-line therapy in hemodialysis patients in Japan. Clin J Am Soc Nephrol. 2011;6:1375–84.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Park H, Rascati KL, Keith MS, Hodgkins P, Smyth M, Goldsmith D, et al. Cost-effectiveness of lanthanum carbonate versus sevelamer hydrochloride for the treatment of hyperphosphatemia in patients with end-stage renal disease: a US payer perspective. Value Health. 2011;14:1002–9.

    Article  PubMed  Google Scholar 

  69. Wang S, Alfieri T, Ramakrishnan K, Braunhofer P, Newsome BA. Serum phosphorus levels and pill burden are inversely associated with adherence in patients on hemodialysis. Nephrol Dial Transplant. 2014;29(11):2092–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Mudge DW, Johnson DW, Howley CM, Carmpell SE, Isbel NM, Van Eps CL, et al. Do aluminum-based phosphate binders continue to have a role in contemporary nephrology practice? BMC Nephrol. 2011;12(20):1–8.

    Google Scholar 

  71. Moe SM, Chertow GM. The case against calcium-based phosphate binders. Clin J Am Soc Nephrol. 2006;1(4):697–703.

    Article  CAS  PubMed  Google Scholar 

  72. Friedman EA. Calcium-based phosphate binders are appropriate in chronic renal failure. Clin J Am Soc Nephrol. 2006;1(4):704–9.

    Article  CAS  PubMed  Google Scholar 

  73. Chertow GM, Burke SA, Raggi P. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int. 2002;62(1):245–52.

    Article  CAS  PubMed  Google Scholar 

  74. Block GA, Spiegel DM, Erlich J, Mehta R, Lindbergh J, Dreisbach A, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int. 2005;68(4):1815–24.

    Article  CAS  PubMed  Google Scholar 

  75. Bushinsky DA. phosphate binders: hold the calcium? Clin J Am Soc Nephrol. 2006;1(4):695–6.

    Article  CAS  PubMed  Google Scholar 

  76. Ahmed AH. Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: the need for clinical trials. Ren Fail. 2010;32(5):642–6.

    Article  CAS  PubMed  Google Scholar 

  77. Ketteler M, Biggar PH, Liangos O. FGF 23 antagonism: the thin line between adaptation and maladaptation in chronic kidney disease. Nephrol Dial Transplant. 2013;28(4):821–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fateme Shamekhi Amiri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, F.S. Contemporary management of phosphorus retention in chronic kidney disease: a review. Clin Exp Nephrol 19, 985–999 (2015). https://doi.org/10.1007/s10157-015-1126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1126-y

Keywords

Navigation