Skip to main content
Log in

Next-Generation Phosphate Binders: Focus on Iron-Based Binders

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Phosphate excess is associated with increased mortality in patients with chronic kidney disease (CKD) and has recently been linked to accelerated aging. Oral phosphate binders are prescribed to patients with CKD to prevent absorption of dietary phosphate. Currently available binders have been associated with impaired outcomes (calcium-based binders) or are expensive (non-calcium-based binders). Iron-based phosphate binders represent a new class of phosphate binders. Four iron-based phosphate binders have undergone testing in clinical trials. The development of fermagate and SBR759 is currently on hold due to suboptimal and adverse effect profiles in at least some clinical trials. Ferric citrate and sucroferric oxyhydroxide (PA21) are at different stages of application for regulatory approval after being found safe and efficacious in decreasing serum phosphate. Iron from ferric citrate is more readily absorbed than that from sucroferric oxyhydroxide. Sucroferric oxyhydroxide was launched in the USA in 2014 for the treatment of hyperphosphatemia in adult dialysis patients. Ferric citrate may be more suited for chronic treatment of hyperphosphatemia in CKD patients requiring iron supplements but its use may have to be limited in time because of potential for iron overload in patients not needing iron or not receiving erythropoiesis-stimulating agents. In contrast, sucroferric oxyhydroxide may be more suited for hyperphosphatemic CKD patients not requiring iron supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gonzalez-Parra E, Tuñón J, Egido J, Ortiz A. Phosphate: a stealthier killer than previously thought? Cardiovasc Pathol. 2012;21:372–81.

    Article  CAS  PubMed  Google Scholar 

  2. Ellam TJ, Chico TJ. Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis. 2012;220:310–8.

    Article  CAS  PubMed  Google Scholar 

  3. Jamal SA, Vandermeer B, Raggi P, Mendelssohn DC, Chatterley T, Dorgan M, Lok CE, Fitchett D, Tsuyuki RT. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet. 2013;382:1268–77.

    Article  CAS  PubMed  Google Scholar 

  4. Ortiz A, Sanchez-Niño MD. The demise of calcium-based phosphate binders. Lancet. 2013;382:1232–4.

    Article  PubMed  Google Scholar 

  5. Itkonen ST, Karp HJ, Kemi VE, Kokkonen EM, Saarnio EM, Pekkinen MH, Kärkkäinen MU, Laitinen EK, Turanlahti MI, Lamberg-Allardt CJ. Associations among total and food additive phosphorus intake and carotid intima-media thickness—a cross-sectional study in a middle-aged population in Southern Finland. Nutr J. 2013;12:94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Waheed AA, Pedraza F, Lenz O, Isakova T. Phosphate control in end-stage renal disease: barriers and opportunities. Nephrol Dial Transplant. 2013;28:2961–8.

    Article  CAS  PubMed  Google Scholar 

  7. Forster I, Hernando N, Sorribas V, Werner A. Phosphate transporters in renal, gastrointestinal, and other tissues. Adv Chronic Kidney Dis. 2011;18:63–76.

    Article  PubMed  Google Scholar 

  8. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don’t know, and what we need to know. Nephrol Dial Transplant. 2013;28:2228–36.

    Article  CAS  PubMed  Google Scholar 

  9. Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, et al. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol. 2011;22:1315–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Izquierdo MC, Sanz AB, Sánchez-Niño MD, Pérez-Gómez MV, Ruiz-Ortega M, Poveda J, Ruiz-Andrés O, Ramos AM, Moreno JA, Egido J, et al. Acute kidney injury transcriptomics unveils a relationship between inflammation and ageing. Nefrologia. 2012;32:715–23.

    PubMed  Google Scholar 

  11. Izquierdo MC, Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Moreno JA, Egido J, Ortiz A. Klotho, phosphate and inflammation/ageing in chronic kidney disease. Nephrol Dial Transplant. 2012;27 Suppl 4:iv6–10.

    PubMed  Google Scholar 

  12. Ohnishi M, Razzaque MS. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010;24:3562–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Tonelli M, Pannu N, Manns B. Oral phosphate binders in patients with kidney failure. N Engl J Med. 2010;362:1312–24.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzalez-Parra E, Gonzalez-Casaus ML, Galán A, Martinez-Calero A, Navas V, Rodriguez M, Ortiz A. Lanthanum carbonate reduces FGF23 in chronic kidney disease Stage 3 patients. Nephrol Dial Transplant. 2011;26:2567–71.

    Article  CAS  PubMed  Google Scholar 

  15. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium × phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    Article  CAS  PubMed  Google Scholar 

  16. Cannata-Andía JB, Fernández-Martín JL, Locatelli F, London G, Gorriz JL, Floege J, Ketteler M, Ferreira A, Covic A, Rutkowski B, et al. Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int. 2013;84:998–1008.

    Article  PubMed  Google Scholar 

  17. Shigematsu T, Tokumoto A, Nakaoka A, Arisaka H. Effect of lanthanum carbonate treatment on bone in Japanese dialysis patients with hyperphosphatemia. Ther Apher Dial. 2011;15:176–84.

    Article  CAS  PubMed  Google Scholar 

  18. Malluche HH, Mawad H, Monier-Faugere MC. Effects of treatment of renal osteodystrophy on bone histology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):S157–63.

    Article  PubMed Central  PubMed  Google Scholar 

  19. http://clinicaltrials.gov/ct2/show/NCT01560884. Accessed 1 April 2014.

  20. Slatopolsky E, Weerts C, Lopez-Hilker S, Norwood K, Zink M, Windus D, Delmez J. Calcium carbonate as a phosphate binder in patients with chronic renal failure undergoing dialysis. N Engl J Med. 1986;315:157–61.

    Article  CAS  PubMed  Google Scholar 

  21. Group KDIGOKC-MW. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD–MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  22. Foundation NK. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42:S1–201.

    Google Scholar 

  23. Bolland MJ, Grey A, Avenell A, Gamble GD, Reid IR. Calcium supplements with or without vitamin D and risk of cardiovascular events: reanalysis of the Women’s Health Initiative limited access dataset and meta-analysis. BMJ. 2011;342:d2040.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bauer DC. Clinical practice. Calcium supplements and fracture prevention. N Engl J Med. 2013;369:1537–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gracia-Iguacel C, Gonzalez-Parra E, Rodriguez-Osorio L, Sanz AB, Almaden Y, de la Piedra C, Egido J, Rodriguez M, Ortiz A. Correction of hypocalcemia allows optimal recruitment of FGF-23-dependent phosphaturic mechanisms in acute hyperphosphatemia post-phosphate enema. J Bone Miner Metab. 2013;31:703–7.

    Article  PubMed  Google Scholar 

  26. de Francisco AL M, Rodríguez M. Magnesium—its role in CKD. Nefrologia. 2013;33:389–99.

    Google Scholar 

  27. Sakaguchi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, Isaka Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014;85:174–81.

    Article  CAS  PubMed  Google Scholar 

  28. Louvet L, Büchel J, Steppan S, Passlick-Deetjen J, Massy-Deetjen ZA. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol Dial Transplant. 2013;28:869–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. de Francisco AL, Leidig M, Covic AC, Ketteler M, Benedyk-Lorens E, Mircescu GM, Scholz C, Ponce P, Passlick-Deetjen J. Evaluation of calcium acetate/magnesium carbonate as a phosphate binder compared with sevelamer hydrochloride in haemodialysis patients: a controlled randomized study (CALMAG study) assessing efficacy and tolerability. Nephrol Dial Transplant. 2010;25:3707–17.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Covic A, Passlick-Deetjen J, Kroczak M, Büschges-Seraphin B, Ghenu A, Ponce P, Marzell B, de Francisco AL. A comparison of calcium acetate/magnesium carbonate and sevelamer-hydrochloride effects on fibroblast growth factor-23 and bone markers: post hoc evaluation from a controlled, randomized study. Nephrol Dial Transplant. 2013;28:2383–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Evenepoel P, Selgas R, Caputo F, Foggensteiner L, Heaf JG, Ortiz A, Kelly A, Chasan-Taber S, Duggal A, Fan S. Efficacy and safety of sevelamer hydrochloride and calcium acetate in patients on peritoneal dialysis. Nephrol Dial Transplant. 2009;24:278–85.

    Article  CAS  PubMed  Google Scholar 

  32. Di Iorio B, Molony D, Bell C, Cucciniello E, Bellizzi V, Russo D, Bellasi A, Investigators IS. Sevelamer versus calcium carbonate in incident hemodialysis patients: results of an open-label 24-month randomized clinical trial. Am J Kidney Dis. 2013;62:771–8.

    Article  PubMed  Google Scholar 

  33. Di Iorio B, Bellasi A, Russo D, Investigators IS. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol. 2012;7:487–93.

    Article  PubMed  Google Scholar 

  34. Rastogi A. Sevelamer revisited: pleiotropic effects on endothelial and cardiovascular risk factors in chronic kidney disease and end-stage renal disease. Ther Adv Cardiovasc Dis. 2013;7:322–42.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Delmez J, Block G, Robertson J, Chasan-Taber S, Blair A, Dillon M, Bleyer AJ. A randomized, double-blind, crossover design study of sevelamer hydrochloride and sevelamer carbonate in patients on hemodialysis. Clin Nephrol. 2007;68:386–91.

    Article  CAS  PubMed  Google Scholar 

  36. Suki WN, Zabaneh R, Cangiano JL, Reed J, Fischer D, Garrett L, Ling BN, Chasan-Taber S, Dillon MA, Blair AT, et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–7.

    Article  CAS  PubMed  Google Scholar 

  37. Locatelli F, Spasovski G, Dimkovic N, Wanner C, Dellanna F, Pontoriero G: The effects of colestilan versus placebo and sevelamer in patients with CKD 5D and hyperphosphataemia: a 1-year prospective randomized study. Nephrol Dial Transplant. 2014;29(5):1061–73.

  38. Savica V, Calò LA, Monardo P, Davis PA, Granata A, Santoro D, Savica R, Musolino R, Comelli MC, Bellinghieri G. Salivary phosphate-binding chewing gum reduces hyperphosphatemia in dialysis patients. J Am Soc Nephrol. 2009;20:639–44.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Zaritsky JJ, Salusky IB. Ironing out the phosphorus problem. Kidney Int. 2010;77:845–7.

    Article  PubMed  Google Scholar 

  40. Drüeke TB, Parfrey PS. Summary of the KDIGO guideline on anemia and comment: reading between the (guide)line(s). Kidney Int. 2012;82:952–60.

    Article  PubMed  Google Scholar 

  41. Okada M, Imamura K, Iida M, Fuchigami T, Omae T. Hypophosphatemia induced by intravenous administration of Saccharated iron oxide. Klin Wochenschr. 1983;61:99–102.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi T, Baxter JG, Maebashi N, Asano T. Oral phosphate binders: phosphate binding capacity of iron (III) hydroxide complexes containing saccharides and their effect on the urinary excretion of calcium and phosphate in rats. Ren Fail. 1999;21:453–68.

    Article  CAS  PubMed  Google Scholar 

  43. Rankin BJ, Zhu H, Webb M, Roberts NB. The development and in-vitro evaluation of novel mixed metal hydroxy-carbonate compounds as phosphate binders. J Pharm Pharmacol. 2001;53:361–9.

    Article  CAS  PubMed  Google Scholar 

  44. Gruenhagen SE, Schulze DG, Chansiri G, Hem KJ, White JL, Hem SL. Effect of sorbitol on the phosphate adsorptive capacity of ferrihydrite suspensions. Pharm Dev Technol. 1997;2:81–6.

    Article  CAS  PubMed  Google Scholar 

  45. Spengler K, Follmann H, Boos KS, Seidel D, von der Haar F, Elsner R, Maywald F. Cross-linked iron dextran is an efficient oral phosphate binder in the rat. Nephrol Dial Transplant. 1996;11:808–12.

    Article  CAS  PubMed  Google Scholar 

  46. Baxter J, Shimizu F, Takiguchi Y, Wada M, Yamaguchi T. Effect of iron(III) chitosan intake on the reduction of serum phosphorus in rats. J Pharm Pharmacol. 2000;52:863–74.

    Article  CAS  PubMed  Google Scholar 

  47. Bürger C, Valcarenghi D, Sandri S, Rodrigues CA. Cross-linking chitosan-Fe(III), an oral phosphate binder: studies in vitro and in vivo. Int J Pharm. 2001;223:29–33.

    Article  PubMed  Google Scholar 

  48. Zhu H, Webb M, Buckley J, Roberts NB. Different Mg to Fe ratios in the mixed metal MgFe hydroxy-carbonate compounds and the effect on phosphate binding compared with established phosphate binders. J Pharm Sci. 2002;91:53–66.

    Article  CAS  PubMed  Google Scholar 

  49. http://clinicaltrials.gov/show/NCT00841126. Accessed 1 April 2014.

  50. http://clinicaltrials.gov/ct2/show/NCT00844662. Accessed 1 April 2014.

  51. http://clinicaltrials.gov/ct2/show/NCT00358722. Accessed 1 April 2014.

  52. McIntyre CW, Pai P, Warwick G, Wilkie M, Toft AJ, Hutchison AJ. Iron–magnesium hydroxycarbonate (fermagate): a novel non-calcium-containing phosphate binder for the treatment of hyperphosphatemia in chronic hemodialysis patients. Clin J Am Soc Nephrol. 2009;4:401–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. http://investor.opko.com/releasedetail.cfm?ReleaseID=745014. Accessed 1 April 2014.

  54. http://www.cytochroma.com/pipeline/product_candidates.html. Accessed 1 April 2014.

  55. Block GA, Brillhart SL, Persky MS, Amer A, Slade AJ. Efficacy and safety of SBR759, a new iron-based phosphate binder. Kidney Int. 2010;77:897–903.

    Article  CAS  PubMed  Google Scholar 

  56. Chen JB, Chiang SS, Chen HC, Obayashi S, Nagasawa M, Hexham JM, Balfour A, Junge G, Akiba T, Fukagawa M. Efficacy and safety of SBR759, a novel calcium-free, iron(III)-based phosphate binder, in Asian patients undergoing hemodialysis: A 12-week, randomized, open-label, dose-titration study versus sevelamer hydrochloride. Nephrology (Carlton). 2011;16:743–50.

    Article  CAS  Google Scholar 

  57. http://www.novctrd.com/ctrdWebApp/clinicaltrialrepository/displayFile.do?trialResult=4663. Accessed 1 April 2014.

  58. http://www.novartis.com/downloads/newsroom/corporate-publications/Novartis-20-F-2010.pdf. Accessed 1 April 2014.

  59. http://www.novctrd.com/ctrdWebApp/clinicaltrialrepository/displayFile.do?trialResult=4664. Accessed 1 April 2014.

  60. Fukagawa M, Kasuga H, Joseph D, Sawata H, Junge G, Moore A, Akiba T. Efficacy and safety of SBR759, a novel calcium-free, iron (III)-based phosphate binder, versus placebo in chronic kidney disease stage V Japanese patients on maintenance renal replacement therapy. Clin Exp Nephrol. 2014;18:135–43.

    Article  CAS  PubMed  Google Scholar 

  61. Hsu CH, Patel SR, Young EW. New phosphate binding agents: ferric compounds. J Am Soc Nephrol. 1999;10:1274–80.

    CAS  PubMed  Google Scholar 

  62. Iida A, Kemmochi Y, Kakimoto K, Tanimoto M, Mimura T, Shinozaki Y, Uemura A, Matsuo A, Matsushita M, Miyamoto K. Ferric citrate hydrate, a new phosphate binder, prevents the complications of secondary hyperparathyroidism and vascular calcification. Am J Nephrol. 2013;37:346–58.

    Article  CAS  PubMed  Google Scholar 

  63. Yang WC, Yang CS, Hou CC, Wu TH, Young EW, Hsu CH. An open-label, crossover study of a new phosphate-binding agent in haemodialysis patients: ferric citrate. Nephrol Dial Transplant. 2002;17:265–70.

    Article  CAS  PubMed  Google Scholar 

  64. Sinsakul M, Sika M, Koury M, Shapiro W, Greene T, Dwyer J, Smith M, Korbet S, Lewis J, Group CS. The safety and tolerability of ferric citrate as a phosphate binder in dialysis patients. Nephron Clin Pract. 2012;121:c25–9.

    Article  PubMed  Google Scholar 

  65. Yokoyama K, Hirakata H, Akiba T, Sawada K, Kumagai Y. Effect of oral JTT-751 (ferric citrate) on hyperphosphatemia in hemodialysis patients: results of a randomized, double-blind, placebo-controlled trial. Am J Nephrol. 2012;36:478–87.

    Article  CAS  PubMed  Google Scholar 

  66. Dwyer JP, Sika M, Schulman G, Chang IJ, Anger M, Smith M, Kaplan M, Zeig S, Koury MJ, Blumenthal SS, et al. Dose-response and efficacy of ferric citrate to treat hyperphosphatemia in hemodialysis patients: a short-term randomized trial. Am J Kidney Dis. 2013;61:759–66.

    Article  CAS  PubMed  Google Scholar 

  67. Umanath K, Sika M, Niecestro R, Connelly C, Schulman G, Koury MJ, Lewis JB, Dwyer JP, Group CS. Rationale and study design of a three-period, 58-week trial of ferric citrate as a phosphate binder in patients with ESRD on dialysis. Hemodial Int. 2013;17:67–74.

    Article  PubMed  Google Scholar 

  68. http://www.keryx.com/press-releases/. Accessed 1 April 2014.

  69. Yokoyama K, Akiba T, Fukagawa M, Nakayama M, Sawada K, Kumagai Y, Chertow GM, Hirakata H. A randomized trial of JTT-751 versus sevelamer hydrochloride in patients on hemodialysis. Nephrol Dial Transplant. 2014;29(5):1053–60.

  70. Mutell R, Rubin JL, Bond TC, Mayne T. Reduced use of erythropoiesis-stimulating agents and intravenous iron with ferric citrate: a managed care cost-offset model. Int J Nephrol Renovasc Dis. 2013;6:79–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. http://www.jt.com/media/press_releases/2014/pdf/20140117_04.pdf. Accessed 1 April 2014.

  72. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/pips/EMEA-001213-PIP02-12/pip_001071.jsp&mid=WC0b01ac058001d129. Accessed 1 April 2014.

  73. Yokoyama K, Hirakata H, Akiba T, Fukagawa M, Nakayama M, Sawada K, Kumagai Y, Block GA. Ferric citrate hydrate for the treatment of hyperphosphatemia in nondialysis-dependent CKD. Clin J Am Soc Nephrol. 2014;9:543–52.

    Article  PubMed  Google Scholar 

  74. http://www.elsevierbi.com/~/media/Supporting%20Documents/The%20Pink%20Sheet%20DAILY/2013/December/12213%20Velphoro%20approval%20letter.pdf. Accessed 1 April 2014.

  75. http://www.viforpharma.com/en/Media/mediareleases/2013/20131128_velphoro-us.php. Accessed 1 April 2014.

  76. http://www.fda.gov/downloads/drugs/informationondrugs/ucm086233.pdf. Accessed 1 April 2014.

  77. Phan O, Maillard M, Peregaux C, Mordasini D, Stehle JC, Funk F, Burnier M. PA21, a new iron-based noncalcium phosphate binder, prevents vascular calcification in chronic renal failure rats. J Pharmacol Exp Ther. 2013;346:281–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hergesell O, Ritz E. Stabilized polynuclear iron hydroxide is an efficient oral phosphate binder in uraemic patients. Nephrol Dial Transplant. 1999;14:863–7.

    Article  CAS  PubMed  Google Scholar 

  79. Geisser P, Philipp E. PA21: a novel phosphate binder for the treatment of hyperphosphatemia in chronic kidney disease. Clin Nephrol. 2010;74:4–11.

    Article  CAS  PubMed  Google Scholar 

  80. Wüthrich RP, Chonchol M, Covic A, Gaillard S, Chong E, Tumlin JA. Randomized clinical trial of the iron-based phosphate binder PA21 in hemodialysis patients. Clin J Am Soc Nephrol. 2013;8:280–9.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Floege J, Covic AC, Ketteler M, Rastogi A, Chong EM, Gaillard S, Lisk LJ, Sprague SM. A phase III study of the efficacy and safety of a novel iron-based phosphate binder in dialysis patients. Kidney Int. 2014.

  82. https://www.velphoro.us/downloads/prescribing-information.pdf. Accessed 1 April 2014.

  83. Van de Vyver FL, Visser WJ, D’Haese PC, De Broe ME. Iron overload and bone disease in chronic dialysis patients. Nephrol Dial Transplant. 1990;5:781–7.

    Article  PubMed  Google Scholar 

  84. Kirchner S, Muduli A, Casirola D, Prum K, Douard V, Ferraris RP. Luminal fructose inhibits rat intestinal sodium-phosphate cotransporter gene expression and phosphate uptake. Am J Clin Nutr. 2008;87:1028–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Lenglet A, Liabeuf S, Guffroy P, Fournier A, Brazier M, Massy ZA. Use of nicotinamide to treat hyperphosphatemia in dialysis patients. Drugs R D. 2013;13:165–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. de Francisco AL. Phosphate binders. Is selection determined by price? Yes. Nefrologia. 2012;32:235–9.

    PubMed  Google Scholar 

Download references

Sources of support that require acknowledgment

Grant support: FIS PS09/00447, PI13/00047, ISCIII-RETIC REDinREN/RD06/0016/ and RD012/0021 FEDER funds, Comunidad de Madrid/CIFRA S2010/BMD-2378. Salary support: FIS to MDSN (Sara Borrell), BFF Hortega), AO (Programa Intensificación Actividad Investigadora), ERA-EDTA (LGE, UE).

Conflict of interest

DN, BFF, UE, LGE have no conflicts of interest. MDSN has received travel support from Genzyme. EGP has received consulting honoraria, speaker fees, or research or travel support from Abbvie, Shire, and Sanofi. AO has received consulting honoraria, speaker fees, or research or travel support from Sanofi, Genzyme, Fresenius Medical Care, Amgen, Shire, Baxter, Rubió, and Abbott.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ortiz.

Additional information

D. Nastou and B. Fernández-Fernández contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastou, D., Fernández-Fernández, B., Elewa, U. et al. Next-Generation Phosphate Binders: Focus on Iron-Based Binders. Drugs 74, 863–877 (2014). https://doi.org/10.1007/s40265-014-0224-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0224-6

Keywords

Navigation