Skip to main content

Advertisement

Log in

Aging, cancer, and antitumor immunity

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Aging leads to numerous changes that affect many components of the immune system, called “immunosenescence”. Indeed, elderly individuals exhibit dysregulated immune responses against pathogens, poor responses to vaccination, and increased susceptibility to many diseases including cancer, autoimmune disorders, and other chronic inflammatory diseases. Despite progressed understanding of immunosenescence, its detailed mechanisms are still not fully understood. With advances in medicine, the population of older cancer patients is expected to rapidly increase in the coming years. Cancer immunotherapies, including immune checkpoint inhibitors (ICIs), have been shown to be effective for multiple cancer types, whereas to date, few specific data for elderly individuals have been published. Some systemic reviews have demonstrated that ICIs exhibit similar efficacy in older cancer patients, but they seem to be less effective in very old patients. In addition, toxicities might be more frequently observed in such patients. Here, we provide a summary to better understand immunosenescence and an overview of its relationship with cancer and antitumor immunity, including the efficacy and toxicity of ICIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. López-Otín C et al (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nikolich-Žugich J (2018) The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 19(1):10–19

    Article  PubMed  Google Scholar 

  3. Colvin MM et al (2017) Aging and the immune response to organ transplantation. J Clin Invest 127(7):2523–2529

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570

    Article  CAS  PubMed  Google Scholar 

  5. Dunn GP et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998

    Article  CAS  PubMed  Google Scholar 

  6. Soto-Perez-de-Celis E et al (2018) Functional versus chronological age: geriatric assessments to guide decision making in older patients with cancer. Lancet Oncol 19(6):e305–e316

    Article  PubMed  Google Scholar 

  7. Browse the SEER cancer statistics review 1975–2017. https://seer.cancer.gov/csr/1975_2017/results_merged/topic_age_dist.pdf

  8. Zou W, Wolchok JD, Chen L (2016) PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 8(328):328rv4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dong H et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    Article  CAS  PubMed  Google Scholar 

  10. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Simell B et al (2011) Aging reduces the functionality of anti-pneumococcal antibodies and the killing of Streptococcus pneumoniae by neutrophil phagocytosis. Vaccine 29(10):1929–1934

    Article  CAS  PubMed  Google Scholar 

  13. van Duin D et al (2007) Age-associated defect in human TLR-1/2 function. J Immunol 178(2):970–975

    Article  PubMed  Google Scholar 

  14. Manser AR, Uhrberg M (2016) Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol Immunother 65(4):417–426

    Article  CAS  PubMed  Google Scholar 

  15. Fang M, Roscoe F, Sigal LJ (2010) Age-dependent susceptibility to a viral disease due to decreased natural killer cell numbers and trafficking. J Exp Med 207(11):2369–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aprahamian T et al (2008) Ageing is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol 152(3):448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Metcalf TU et al (2015) Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell 14(3):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metcalf TU et al (2017) Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol 199(4):1405–1417

    Article  CAS  PubMed  Google Scholar 

  19. Cumberbatch M, Dearman RJ, Kimber I (2002) Influence of ageing on Langerhans cell migration in mice: identification of a putative deficiency of epidermal interleukin-1beta. Immunology 105(4):466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zacca ER et al (2015) Aging impairs the ability of conventional dendritic cells to cross-prime CD8+ T cells upon stimulation with a TLR7 ligand. PLoS ONE 10(10):e0140672

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chougnet CA et al (2015) Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol 195(6):2624–2632

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Legge K, Perlman S (2011) Age-related increases in PGD(2) expression impair respiratory DC migration, resulting in diminished T cell responses upon respiratory virus infection in mice. J Clin Invest 121(12):4921–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi Q et al (2014) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111(36):13139–13144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thome JJ et al (2016) Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol 1(6):eaah6506

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rudd BD et al (2011) Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. J Immunol 186(4):2056–2064

    Article  CAS  PubMed  Google Scholar 

  26. Sprent J, Surh CD (2011) Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 12(6):478–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wertheimer AM et al (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol 192(5):2143–2155

    Article  CAS  PubMed  Google Scholar 

  28. Rudd BD et al (2011) Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc Natl Acad Sci USA 108(33):13694–13699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kogut I et al (2012) B cell maintenance and function in aging. Semin Immunol 24(5):342–349

    Article  CAS  PubMed  Google Scholar 

  30. Hao Y et al (2011) A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice. Blood 118(5):1294–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Becklund BR et al (2016) The aged lymphoid tissue environment fails to support naïve T cell homeostasis. Sci Rep 6:30842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Decman V et al (2012) Defective CD8 T cell responses in aged mice are due to quantitative and qualitative changes in virus-specific precursors. J Immunol 188(4):1933–1941

    Article  CAS  PubMed  Google Scholar 

  33. Renkema KR et al (2014) Two separate defects affecting true naive or virtual memory T cell precursors combine to reduce naive T cell responses with aging. J Immunol 192(1):151–159

    Article  CAS  PubMed  Google Scholar 

  34. Chiu BC et al (2013) Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J Immunol 191(12):5793–5796

    Article  CAS  PubMed  Google Scholar 

  35. Holtappels R et al (2000) Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74(24):11495–11503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Munks MW et al (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176(6):3760–3766

    Article  CAS  PubMed  Google Scholar 

  37. Sylwester AW et al (2005) Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 202(5):673–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miller RA, Stutman O (1982) Limiting dilution analysis of IL-2 production: studies of age, genotype, and regulatory interactions. Lymphokine Res 1(3):79–86

    CAS  PubMed  Google Scholar 

  39. Effros RB, Walford RL (1983) The immune response of aged mice to influenza: diminished T-cell proliferation, interleukin 2 production and cytotoxicity. Cell Immunol 81(2):298–305

    Article  CAS  PubMed  Google Scholar 

  40. Garcia GG, Sadighi Akha AA, Miller RA (2007) Age-related defects in moesin/ezrin cytoskeletal signals in mouse CD4 T cells. J Immunol 179(10):6403–6409

    Article  CAS  PubMed  Google Scholar 

  41. Haynes L et al (1999) Interleukin 2, but not other common gamma chain-binding cytokines, can reverse the defect in generation of CD4 effector T cells from naive T cells of aged mice. J Exp Med 190(7):1013–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsukamoto H et al (2009) Age-associated increase in lifespan of naive CD4 T cells contributes to T-cell homeostasis but facilitates development of functional defects. Proc Natl Acad Sci USA 106(43):18333–18338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsukamoto H et al (2010) Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J Immunol 185(8):4535–4544

    Article  CAS  PubMed  Google Scholar 

  44. Brien JD et al (2009) Key role of T cell defects in age-related vulnerability to West Nile virus. J Exp Med 206(12):2735–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smithey MJ et al (2011) Increased apoptosis, curtailed expansion and incomplete differentiation of CD8+ T cells combine to decrease clearance of L. monocytogenes in old mice. Eur J Immunol 41(5):1352–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uhrlaub JL et al (2016) Dysregulated TGF-β production underlies the age-related vulnerability to chikungunya virus. PLoS Pathog 12(10):e1005891

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martinez-Jimenez CP et al (2017) Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355(6332):1433–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moskowitz DM et al (2017) Epigenomics of human CD8 T cell differentiation and aging. Sci Immunol 2(8):eaag0192

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ucar D et al (2017) The chromatin accessibility signature of human immune aging stems from CD8(+) T cells. J Exp Med 214(10):3123–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pulko V et al (2016) Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol 17(8):966–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Frasca D et al (2004) Reduced Ig class switch in aged mice correlates with decreased E47 and activation-induced cytidine deaminase. J Immunol 172(4):2155–2162

    Article  CAS  PubMed  Google Scholar 

  52. Frasca D et al (2016) The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 34(25):2834–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Richner JM et al (2015) Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection. PLoS Pathog 11(7):e1005027

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sage PT et al (2015) Defective TFH cell function and increased tfr cells contribute to defective antibody production in aging. Cell Rep 12(2):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Leonardi GC et al (2018) Ageing: from inflammation to cancer. Immun Ageing 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fagiolo U et al (1993) Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol 23(9):2375–2378

    Article  CAS  PubMed  Google Scholar 

  57. Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441(7092):431–436

    Article  CAS  PubMed  Google Scholar 

  58. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    Article  CAS  PubMed  Google Scholar 

  59. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  60. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  61. Chia WK, Ali R, Toh HC (2012) Aspirin as adjuvant therapy for colorectal cancer—reinterpreting paradigms. Nat Rev Clin Oncol 9(10):561–570

    Article  CAS  PubMed  Google Scholar 

  62. Rothwell PM et al (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379(9826):1591–1601

    Article  CAS  PubMed  Google Scholar 

  63. Burn J et al (2020) Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395(10240):1855–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Reck M et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375(19):1823–1833

    Article  CAS  PubMed  Google Scholar 

  66. Borghaei H et al (2015) Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373(17):1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brahmer J et al (2015) Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Michot JM et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148

    Article  CAS  PubMed  Google Scholar 

  69. Hurria A et al (2015) Improving the evidence base for treating older adults with cancer: American society of clinical oncology statement. J Clin Oncol 33(32):3826–3833

    Article  PubMed  Google Scholar 

  70. Nishijima TF et al (2016) Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev 45:30–37

    Article  CAS  PubMed  Google Scholar 

  71. Elias R et al (2018) Efficacy of PD-1 & PD-L1 inhibitors in older adults: a meta-analysis. J Immunother Cancer 6(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang L et al (2019) Comparison of immune checkpoint inhibitors between older and younger patients with advanced or metastatic lung cancer: a systematic review and meta-analysis. Biomed Res Int 2019:9853701

    PubMed  PubMed Central  Google Scholar 

  73. Landre T et al (2020) Immune checkpoint inhibitors for patients aged ≥ 75 years with advanced cancer in first- and second-line settings: a meta-analysis. Drugs Aging 37(10):747–754

    Article  CAS  PubMed  Google Scholar 

  74. Chiarion Sileni V et al (2014) Efficacy and safety of ipilimumab in elderly patients with pretreated advanced melanoma treated at Italian centres through the expanded access programme. J Exp Clin Cancer Res 33(1):30

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marur S et al (2018) FDA analyses of survival in older adults with metastatic non-small cell lung cancer in controlled trials of PD-1/PD-L1 blocking antibodies. Semin Oncol 45(4):220–225

    Article  CAS  PubMed  Google Scholar 

  76. Corbaux P et al (2019) Older and younger patients treated with immune checkpoint inhibitors have similar outcomes in real-life setting. Eur J Cancer 121:192–201

    Article  CAS  PubMed  Google Scholar 

  77. Yamaguchi O et al (2020) Efficacy and safety of immune checkpoint inhibitor monotherapy in pretreated elderly patients with non-small cell lung cancer. Cancer Chemother Pharmacol 85(4):761–771

    Article  CAS  PubMed  Google Scholar 

  78. Ibrahim T et al (2018) Older melanoma patients aged 75 and above retain responsiveness to anti-PD1 therapy: results of a retrospective single-institution cohort study. Cancer Immunol Immunother 67(10):1571–1578

    Article  CAS  PubMed  Google Scholar 

  79. Numakura K et al (2020) Efficacy and safety of nivolumab for renal cell carcinoma in patients over 75 years old from multiple Japanese institutes. Int J Clin Oncol 25(8):1543–1550

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [B Grant No. 20H03694 (to Y.T.), Challenging Exploratory Research Grant No. 19K22574 (to Y.T.)], by the Project for Cancer Research and Therapeutic Evolution [P-CREATE, No. 18cm0106340h0001 (YT)] and the Practical Research for Innovative Cancer Control [19ck0106521h0001 (YT)] from Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the content, participated in the writing of the manuscript and reviewed/edited the article.

Corresponding author

Correspondence to Yosuke Togashi.

Ethics declarations

Conflict of interest

Y. T. received research grants and honoraria from Ono Pharmaceutical and Bristol-Myers Squibb, research grants from KOTAI Biotechnologies and Daiichi-Sankyo, and honoraria from Chugai Pharmaceutical outside this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, H., Togashi, Y. Aging, cancer, and antitumor immunity. Int J Clin Oncol 27, 316–322 (2022). https://doi.org/10.1007/s10147-021-01913-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-01913-z

Keywords

Navigation