Skip to main content

Advertisement

Log in

Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance

  • Symposium-in-writing paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

A key feature of human natural killer (NK) cells, which enables efficient recognition of infected and malignant target cells, is the expression of HLA class I-specific receptors of the KIR and NKG2 gene families. Cell-to-cell variability in receptor expression leads to the formation of complex NK cell repertoires. As outlined here, NK cells go through major changes from newborns to adults characterized by downregulation of the inhibitory NKG2A receptor and concomitant upregulation of KIR family members. This process is completed in young adults, and in the majority of individuals, KIR/NKG2A repertoires remain remarkably stable until old age. Nonetheless, age-related factors have the potential to majorly influence the complexity of NK cell repertoires: Firstly infection with HCMV is associated with major clonal expansions of terminally differentiated NKG2C- and KIR-expressing NK cells in certain individuals. Secondly, ineffective hematopoiesis can lead to immature and less diversified NK cell repertoires as observed in myelodysplastic syndrome (MDS), a malignant disease of the elderly. Thus, whereas in the majority of elderly the NK cell compartment appears to be highly stable in terms of function and phenotype, in a minority of subjects a breakdown of NK cell repertoire diversity is observed that might influence immune surveillance and healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

CD:

Cluster of differentiation

HCMV:

Human cytomegalovirus

HLA:

Human leukocyte antigen

HSPC:

Hematopoietic stem and progenitor cells

IFNγ:

Interferon-γ

IgG:

Immunoglobulin G

IL-2:

Interleukin-2

IPSS:

International prognostic scoring system

KIR:

Killer cell immunoglobulin-like receptor

MDS:

Myelodysplastic syndrome

MHC:

Major histocompatibility complex

MIC:

MHC class I chain-related protein

MSC:

Mesenchymal stem cells

NK:

Natural killer

TNFα:

Tumor necrose factor-α

ULBP:

UL-16-binding proteins

References

  1. WHO Globocan (2008) Cancer incidence and mortality worldwide. http://globocan.iarc.fr. Accessed 22 April 2015

  2. Fulop T, Larbi A, Pawelec G (2013) Human T cell aging and the impact of persistent viral infections. Front Immunol 4:271. doi:10.3389/fimmu.2013.00271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139. doi:10.1038/ni1033

    Article  CAS  PubMed  Google Scholar 

  4. Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ (2005) The influence of age on T cell generation and TCR diversity. J Immunol 174(11):7446–7452. doi:10.4049/jimmunol.174.11.7446

    Article  CAS  PubMed  Google Scholar 

  5. Manser AR, Weinhold S, Uhrberg M (2015) Human KIR repertoires: shaped by genetic diversity and evolution. Immunol Rev 267. doi:10.1111/imr.12316

  6. Weng NP (2006) Aging of the immune system: how much can the adaptive immune system adapt? Immunity 24(5):495–499. doi:10.1016/j.immuni.2006.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Le Garff-Tavernier M, Beziat V, Decocq J, Siguret V, Gandjbakhch F, Pautas E, Debre P, Merle-Beral H, Vieillard V (2010) Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 9(4):527–535. doi:10.1111/j.1474-9726.2010.00584.x

    Article  PubMed  Google Scholar 

  8. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, Cardoso-Oliveira J, Ribeiro Ados S, Falcao RR, Abdelhay E, Bouzas LF, Thuler LC, Ornellas MH, Diamond HR (2011) Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol 72(4):319–329. doi:10.1016/j.humimm.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  9. Hazeldine J, Hampson P, Lord JM (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11(5):751–759. doi:10.1111/j.1474-9726.2012.00839.x

    Article  CAS  PubMed  Google Scholar 

  10. Lutz CT, Karapetyan A, Al-Attar A, Shelton BJ, Holt KJ, Tucker JH, Presnell SR (2011) Human NK cells proliferate and die in vivo more rapidly than T cells in healthy young and elderly adults. J Immunol 186(8):4590–4598. doi:10.4049/jimmunol.1002732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lutz CT, Moore MB, Bradley S, Shelton BJ, Lutgendorf SK (2005) Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 126(6–7):722–731. doi:10.1016/j.mad.2005.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campos C, Pera A, Sanchez-Correa B, Alonso C, Lopez-Fernandez I, Morgado S, Tarazona R, Solana R (2014) Effect of age and CMV on NK cell subpopulations. Exp Gerontol 54:130–137. doi:10.1016/j.exger.2014.01.008

    Article  CAS  PubMed  Google Scholar 

  13. Chidrawar SM, Khan N, Chan YL, Nayak L, Moss PA (2006) Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing 3:10. doi:10.1186/1742-4933-3-10

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uhrberg M (2005) The CD107 mobilization assay: viable isolation and immunotherapeutic potential of tumor-cytolytic NK cells. Leukemia 19(5):707–709. doi:10.1038/sj.leu.2403705

    Article  CAS  PubMed  Google Scholar 

  15. Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Bjorklund AT, Flodstrom-Tullberg M, Michaelsson J, Rottenberg ME, Guzman CA, Ljunggren HG, Malmberg KJ (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19):3853–3864. doi:10.1182/blood-2010-04-281675

    Article  PubMed  Google Scholar 

  16. Beziat V, Descours B, Parizot C, Debre P, Vieillard V (2010) NK cell terminal differentiation: correlated stepwise decrease of NKG2A and acquisition of KIRs. PLoS One 5(8):e11966. doi:10.1371/journal.pone.0011966

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Verges S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16 + NK-cell subset. Blood 116(19):3865–3874. doi:10.1182/blood-2010-04-282301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Juelke K, Killig M, Thiel A, Dong J, Romagnani C (2009) Education of hyporesponsive NK cells by cytokines. Eur J Immunol 39(9):2548–2555. doi:10.1002/eji.200939307

    Article  CAS  PubMed  Google Scholar 

  19. Campos C, Lopez N, Pera A, Gordillo JJ, Hassouneh F, Tarazona R, Solana R (2015) Expression of NKp30, NKp46 and DNAM-1 activating receptors on resting and IL-2 activated NK cells from healthy donors according to CMV-serostatus and age. Biogerontology. doi:10.1007/s10522-015-9581-0

    PubMed  Google Scholar 

  20. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172(3):1455–1462. doi:10.4049/jimmunol.172.3.1455

    Article  CAS  PubMed  Google Scholar 

  21. Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143(10):3183–3191

    CAS  PubMed  Google Scholar 

  22. Hejazi M, Manser AR, Frobel J, Kundgen A, Zhao X, Schonberg K, Germing U, Haas R, Gattermann N, Uhrberg M (2015) Impaired cytotoxicity associated with defective natural killer cell differentiation in myelodysplastic syndromes. Haematologica 100(5):643–652. doi:10.3324/haematol.2014.118679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151

    Article  CAS  PubMed  Google Scholar 

  24. Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G, Forte G, Carrega P, Lui G, Conte R, Strowig T, Moretta A, Munz C, Thiel A, Moretta L, Ferlazzo G (2007) CD56brightCD16- killer Ig-like receptor- NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178(8):4947–4955. doi:10.4049/jimmunol.178.8.4947

    Article  CAS  PubMed  Google Scholar 

  25. Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, Forti P, Facchini A (2003) Different rates of telomere shortening and telomerase activity reduction in CD8 T and CD16 NK lymphocytes with ageing. Exp Gerontol 38(6):653–659. doi:10.1016/S0531-5565(03)00058-5

    Article  CAS  PubMed  Google Scholar 

  26. Beli E, Duriancik DM, Clinthorne JF, Lee T, Kim S, Gardner EM (2014) Natural killer cell development and maturation in aged mice. Mech Ageing Dev 135:33–40. doi:10.1016/j.mad.2013.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shehata HM, Hoebe K, Chougnet CA (2015) The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 14(2):191–199. doi:10.1111/acel.12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parham P, Norman PJ, Abi-Rached L, Guethlein LA (2012) Human-specific evolution of killer cell immunoglobulin-like receptor recognition of major histocompatibility complex class I molecules. Philos Trans R Soc Lond B Biol Sci 367(1590):800–811. doi:10.1098/rstb.2011.0266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uhrberg M (2005) The KIR gene family: life in the fast lane of evolution. Eur J Immunol 35(1):10–15. doi:10.1002/eji.200425743

    Article  CAS  PubMed  Google Scholar 

  30. Uhrberg M (2005) Shaping the human NK cell repertoire: an epigenetic glance at KIR gene regulation. Mol Immunol 42(4):471–475. doi:10.1016/j.molimm.2004.07.029

    Article  CAS  PubMed  Google Scholar 

  31. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG (1998) Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 187(5):813–818. doi:10.1084/jem.187.5.813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Braud VM, Allan DS, O’Callaghan CA, Soderstrom K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH, Lanier LL, McMichael AJ (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A. B and C. Nature 391(6669):795–799. doi:10.1038/35869

    CAS  PubMed  Google Scholar 

  33. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95(9):5199–5204. doi:10.1073/pnas.95.9.5199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285(5428):727–729. doi:10.1126/science.285.5428.727

    Article  CAS  PubMed  Google Scholar 

  35. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14(2):123–133. doi:10.1016/S1074-7613(01)00095-4

    Article  CAS  PubMed  Google Scholar 

  36. Kim S, Poursine-Laurent J, Truscott SM, Lybarger L, Song YJ, Yang L, French AR, Sunwoo JB, Lemieux S, Hansen TH, Yokoyama WM (2005) Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436(7051):709–713. doi:10.1038/nature03847

    Article  CAS  PubMed  Google Scholar 

  37. Fernandez NC, Treiner E, Vance RE, Jamieson AM, Lemieux S, Raulet DH (2005) A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105(11):4416–4423. doi:10.1182/blood-2004-08-3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, Breso V, Frassati C, Reviron D, Middleton D, Romagne F, Ugolini S, Vivier E (2006) Human NK cell education by inhibitory receptors for MHC class I. Immunity 25(2):331–342. doi:10.1016/j.immuni.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  39. Bienemann K, Iouannidou K, Schoenberg K, Krux F, Reuther S, Feyen O, Bienemann K, Schuster F, Uhrberg M, Laws HJ, Borkhardt A (2011) iNKT cell frequency in peripheral blood of Caucasian children and adolescent: the absolute iNKT cell count is stable from birth to adulthood. Scand J Immunol 74(4):406–411. doi:10.1111/j.1365-3083.2011.02591.x

    Article  CAS  PubMed  Google Scholar 

  40. Schonberg K, Fischer JC, Kogler G, Uhrberg M (2011) Neonatal NK-cell repertoires are functionally, but not structurally, biased toward recognition of self HLA class I. Blood 117(19):5152–5156. doi:10.1182/blood-2011-02-334441

    Article  PubMed  Google Scholar 

  41. Schonberg K, Sribar M, Enczmann J, Fischer JC, Uhrberg M (2011) Analyses of HLA-C-specific KIR repertoires in donors with group A and B haplotypes suggest a ligand-instructed model of NK cell receptor acquisition. Blood 117(1):98–107. doi:10.1182/blood-2010-03-273656

    Article  PubMed  Google Scholar 

  42. Phillips JH, Lanier LL (1985) A model for the differentiation of human natural killer cells. Studies on the in vitro activation of Leu-11 + granular lymphocytes with a natural killer-sensitive tumor cell, K562. J Exp Med 161(6):1464–1482

    Article  CAS  PubMed  Google Scholar 

  43. Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8(7):512–522. doi:10.1038/nri2318

    Article  CAS  PubMed  Google Scholar 

  44. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E (2012) The impact of CMV infection on survival in older humans. Curr Opin Immunol 24(4):507–511. doi:10.1016/j.coi.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  45. Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malats N, Lopez-Botet M (2004) Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 104(12):3664–3671. doi:10.1182/blood-2004-05-2058

    Article  CAS  PubMed  Google Scholar 

  46. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296(5571):1323–1326. doi:10.1126/science.1070884

    Article  CAS  PubMed  Google Scholar 

  47. Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Sohlberg E, Bjorklund AT, Retiere C, Sverremark-Ekstrom E, Traherne J, Ljungman P, Schaffer M, Price DA, Trowsdale J, Michaelsson J, Ljunggren HG, Malmberg KJ (2013) NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 121(14):2678–2688. doi:10.1182/blood-2012-10-459545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bjorkstrom NK, Lindgren T, Stoltz M, Fauriat C, Braun M, Evander M, Michaelsson J, Malmberg KJ, Klingstrom J, Ahlm C, Ljunggren HG (2010) Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J Exp Med 208(1):13–21. doi:10.1084/jem.20100762

    Article  PubMed  Google Scholar 

  49. Beziat V, Dalgard O, Asselah T, Halfon P, Bedossa P, Boudifa A, Hervier B, Theodorou I, Martinot M, Debre P, Bjorkstrom NK, Malmberg KJ, Marcellin P, Vieillard V (2012) CMV drives clonal expansion of NKG2C + NK cells expressing self-specific KIRs in chronic hepatitis patients. Eur J Immunol 42(2):447–457. doi:10.1002/eji.201141826

    Article  CAS  PubMed  Google Scholar 

  50. Guma M, Cabrera C, Erkizia I, Bofill M, Clotet B, Ruiz L, Lopez-Botet M (2006) Human cytomegalovirus infection is associated with increased proportions of NK cells that express the CD94/NKG2C receptor in aviremic HIV-1-positive patients. J Infect Dis 194(1):38–41. doi:10.1086/504719

    Article  PubMed  Google Scholar 

  51. Elmaagacli AH, Steckel NK, Koldehoff M, Hegerfeldt Y, Trenschel R, Ditschkowski M, Christoph S, Gromke T, Kordelas L, Ottinger HD, Ross RS, Horn PA, Schnittger S, Beelen DW (2011) Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 118(5):1402–1412. doi:10.1182/blood-2010-08-304121

    Article  CAS  PubMed  Google Scholar 

  52. Germing U, Aul C, Niemeyer CM, Haas R, Bennett JM (2008) Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes. Ann Hematol 87(9):691–699. doi:10.1007/s00277-008-0499-3

    Article  PubMed  Google Scholar 

  53. Geyh S, Oz S, Cadeddu RP, Frobel J, Bruckner B, Kundgen A, Fenk R, Bruns I, Zilkens C, Hermsen D, Gattermann N, Kobbe G, Germing U, Lyko F, Haas R, Schroeder T (2013) Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27(9):1841–1851. doi:10.1038/leu.2013.193

    Article  CAS  PubMed  Google Scholar 

  54. Chiu BC, Martin BE, Stolberg VR, Chensue SW (2013) The host environment is responsible for aging-related functional NK cell deficiency. J Immunol 191(9):4688–4698. doi:10.4049/jimmunol.1301625

    Article  CAS  PubMed  Google Scholar 

  55. Imai K, Matsuyama S, Miyake S, Suga K, Nakachi K (2000) Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet 356(9244):1795–1799. doi:10.1016/S0140-6736(00)03231-1

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Wallace DL, de Lara CM, Ghattas H, Asquith B, Worth A, Griffin GE, Taylor GP, Tough DF, Beverley PC, Macallan DC (2007) In vivo kinetics of human natural killer cells: the effects of ageing and acute and chronic viral infection. Immunology 121(2):258–265. doi:10.1111/j.1365-2567.2007.02573.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funds by the Deutsche Krebshilfe (Grant 110351) and the Deutsche Forschungsgemeinschaft (research Grant UH 91/7-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Uhrberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the Symposium-in-Writing “Natural killer cells, ageing and cancer”, a series of papers published in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manser, A.R., Uhrberg, M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance. Cancer Immunol Immunother 65, 417–426 (2016). https://doi.org/10.1007/s00262-015-1750-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1750-0

Keywords

Navigation