Skip to main content

Advertisement

Log in

Recent advances in targeting DNA repair pathways for the treatment of ovarian cancer and their clinical relevance

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Poly (ADP-ribose) polymerase (PARP) inhibitors have attracted much attention as one of the major molecular-targeted therapeutics for inhibiting DNA damage response. The PARP inhibitor, olaparib, has been clinically applied for treating certain recurrent ovarian cancer patients with BRCA1/2 mutations in Europe and the United States. It was also designated on 24 March 2017 as an orphan drug in Japan for similar clinical indications. In this review, we discuss (i) the prevalence of BRCA1/2 mutations in ovarian cancer, (ii) clinical trials of PARP inhibitors in ovarian cancer, (iii) genetic counseling for hereditary breast and ovarian cancer patients, and (iv) non-BRCA genes that may be associated with homologous recombination deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomkinson AE, Chen L, Dong Z et al (2001) Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 68:151–164

    Article  CAS  PubMed  Google Scholar 

  2. Jasin M (2002) Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21:8981–8993

    Article  CAS  PubMed  Google Scholar 

  3. Ashworth A (2008) A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J Clin Oncol 26:3785–3790

    Article  CAS  PubMed  Google Scholar 

  4. Martin SA, Lord CJ, Ashworth A (2008) DNA repair deficiency as a therapeutic target in cancer. Curr Opin Genet Dev 18:80–86

    Article  CAS  PubMed  Google Scholar 

  5. Yap TA, Sandhu SK, Carden CP et al (2011) Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin 61:31–49

    Article  PubMed  Google Scholar 

  6. Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393

    Article  CAS  PubMed  Google Scholar 

  7. Pal T, Permuth-Wey J, Betts JA et al (2005) BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer 104:2807–2816

    Article  CAS  PubMed  Google Scholar 

  8. Walsh T, Casadei S, Lee MK et al (2011) Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci USA 108:18032–18037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  10. Pennington KP, Walsh T, Harrell MI et al (2014) Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20:764–775

    Article  CAS  PubMed  Google Scholar 

  11. Kim G, Ison G, McKee AE et al (2015) FDA approval summary: olaparib monotherapy in patients with deleterious Germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21:4257–4261

    Article  CAS  PubMed  Google Scholar 

  12. George A, Kaye S, Banerjee S (2017) Delivering widespread BRCA testing and PARP inhibition to patients with ovarian cancer. Nat Rev Clin Oncol. 14(5): 284−296

  13. Alsop K, Fereday S, Meldrum C et al (2012) BRCA mutation frequency and patterns of treatment response in BRCA mutation-positive women with ovarian cancer: a report from the Australian Ovarian Cancer Study Group. J Clin Oncol 30:2654–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Norquist BM, Harrell MI, Brady MF et al (2016) Inherited mutations in women with ovarian carcinoma. JAMA Oncol 2:482–490

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moslehi R, Chu W, Karlan B et al (2000) BRCA1 and BRCA2 mutation analysis of 208 Ashkenazi Jewish women with ovarian cancer. Am J Hum Genet 66:1259–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Satagopan JM, Boyd J, Kauff ND et al (2002) Ovarian cancer risk in Ashkenazi Jewish carriers of BRCA1 and BRCA2 mutations. Clin Cancer Res 8:3776–3781

    CAS  PubMed  Google Scholar 

  17. Moller P, Hagen AI, Apold J et al (2007) Genetic epidemiology of BRCA mutations–family history detects less than 50% of the mutation carriers. Eur J Cancer 43:1713–1717

    Article  PubMed  Google Scholar 

  18. Soegaard M, Kjaer SK, Cox M et al (2008) BRCA1 and BRCA2 mutation prevalence and clinical characteristics of a population-based series of ovarian cancer cases from Denmark. Clin Cancer Res 14:3761–3767

    Article  CAS  PubMed  Google Scholar 

  19. Norquist BM, Pennington KP, Agnew KJ et al (2013) Characteristics of women with ovarian carcinoma who have BRCA1 and BRCA2 mutations not identified by clinical testing. Gynecol Oncol 128:483–487

    Article  CAS  PubMed  Google Scholar 

  20. Sakamoto I, Hirotsu Y, Nakagomi H et al (2016) BRCA1 and BRCA2 mutations in Japanese patients with ovarian, fallopian tube, and primary peritoneal cancer. Cancer 122:84–90

    Article  CAS  PubMed  Google Scholar 

  21. Farmer H, McCabe N, Lord CJ et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921

    Article  CAS  PubMed  Google Scholar 

  22. Bryant HE, Schultz N, Thomas HD et al (2005) Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–917

    Article  CAS  PubMed  Google Scholar 

  23. Fong PC, Boss DS, Yap TA et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  CAS  PubMed  Google Scholar 

  24. Audeh MW, Carmichael J, Penson RT et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–251

    Article  CAS  PubMed  Google Scholar 

  25. Kaufman B, Shapira-Frommer R, Schmutzler RK et al (2015) Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol 33:244–250

    Article  CAS  PubMed  Google Scholar 

  26. Ledermann J, Harter P, Gourley C et al (2012) Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med 366:1382–1392

    Article  CAS  PubMed  Google Scholar 

  27. Ledermann J, Harter P, Gourley C et al (2014) Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer: a preplanned retrospective analysis of outcomes by BRCA status in a randomised phase 2 trial. Lancet Oncol 15:852–861

    Article  CAS  PubMed  Google Scholar 

  28. Ledermann JA, Harter P, Gourley C et al (2016) Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial. Lancet Oncol 17:1579–1589

    Article  CAS  PubMed  Google Scholar 

  29. Domchek SM, Aghajanian C, Shapira-Frommer R et al (2016) Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol 140:199–203

    Article  CAS  PubMed  Google Scholar 

  30. Pujade-Lauraine E, Ledermann JA, Penson RT et al (2017) Treatment with olaparib monotherapy in the maintenance setting significantly improves progression-free survival in patients with platinum-sensitive relapsed ovarian cancer: Results from the phase III SOLO2 study. In: SGO Annual Meeting (Late-Breaking Abstract-2). March 14

  31. Donawho CK, Luo Y, Luo Y et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728–2737

    Article  CAS  PubMed  Google Scholar 

  32. Rottenberg S, Jaspers JE, Kersbergen A et al (2008) High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105:17079–17084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oza AM, Cibula D, Benzaquen AO et al (2015) Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol 16:87–97

    Article  CAS  PubMed  Google Scholar 

  34. Yadav A, Kumar B, Teknos TN et al (2011) Sorafenib enhances the antitumor effects of chemoradiation treatment by downregulating ERCC-1 and XRCC-1 DNA repair proteins. Mol Cancer Ther 10:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu JF, Barry WT, Birrer M et al (2014) Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol 15:1207–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coleman RL, Sill MW, Bell-McGuinn K et al (2015) A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation − An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 137:386–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McNeish I, A.M. O, Coleman RL et al (2015) Results of ARIEL2: a phase 2 trial to prospectively identify ovarian cancer patients likely to respond to rucaparib using tumor genetic analysis. J Clin Oncol 33(suppl): abstract 5508

  38. Swisher EM, Lin KK, Oza AM et al (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18:75–87

    Article  CAS  PubMed  Google Scholar 

  39. Jones P, Wilcoxen K, Rowley M et al (2015) Niraparib: a poly(ADP-ribose) polymerase (PARP) inhibitor for the treatment of tumors with defective homologous recombination. J Med Chem 58:3302–3314

    Article  CAS  PubMed  Google Scholar 

  40. Mirza MR, Monk BJ, Herrstedt J et al (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375:2154–2164

    Article  CAS  PubMed  Google Scholar 

  41. Telli ML, Timms KM, Reid J et al (2016) Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res 22:3764–3773

    Article  CAS  PubMed  Google Scholar 

  42. Yang D, Khan S, Sun Y et al (2011) Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 306:1557–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bolton KL, Chenevix-Trench G, Goh C et al (2012) Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 307:382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu J, Cristea MC, Frankel P et al (2012) Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet 205:34–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Candido-dos-Reis FJ, Song H, Goode EL et al (2015) Germline mutation in BRCA1 or BRCA2 and ten-year survival for women diagnosed with epithelial ovarian cancer. Clin Cancer Res 21:652–657

    Article  CAS  PubMed  Google Scholar 

  46. Gourley C, Michie CO, Roxburgh P et al (2010) Increased incidence of visceral metastases in scottish patients with BRCA1/2-defective ovarian cancer: an extension of the ovarian BRCAness phenotype. J Clin Oncol 28:2505–2511

    Article  PubMed  Google Scholar 

  47. Daly MB, Pilarski R, Axilbund JE et al (2014) NCCN clinical practice guidelines in oncology (NCCN Guidelines®). Genetic/familial high-risk assessment: breast and ovarian V2.2014. www.nccn.org.

  48. Garcia C, Wendt J, Lyon L et al (2014) Risk management options elected by women after testing positive for a BRCA mutation. Gynecol Oncol 132:428–433

    Article  PubMed  Google Scholar 

  49. Ludwig KK, Neuner J, Butler A et al (2016) Risk reduction and survival benefit of prophylactic surgery in BRCA mutation carriers, a systematic review. Am J Surg 212:660–669

    Article  PubMed  Google Scholar 

  50. Cousineau I, Belmaaza A (2011) EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases. Mol Genet Genomics 285:325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilkerson PM, Dedes KJ, Wetterskog D et al (2011) Functional characterization of EMSY gene amplification in human cancers. J Pathol 225:29–42

    Article  CAS  PubMed  Google Scholar 

  52. Campeau PM, Foulkes WD, Tischkowitz MD (2008) Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124:31–42

    Article  CAS  PubMed  Google Scholar 

  53. Kast K, Rhiem K, Wappenschmidt B et al (2016) Prevalence of BRCA1/2 germline mutations in 21 401 families with breast and ovarian cancer. J Med Genet 53:465–471

    Article  PubMed  Google Scholar 

  54. Nielsen FC, van Overeem Hansen T, Sorensen CS (2016) Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 16:599–612

    Article  CAS  PubMed  Google Scholar 

  55. Loveday C, Turnbull C, Ruark E et al (2012) Germline RAD51C mutations confer susceptibility to ovarian cancer. Nat Genet 44:475–476 author reply 476

    Article  CAS  PubMed  Google Scholar 

  56. Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414

    Article  CAS  PubMed  Google Scholar 

  57. Coulet F, Fajac A, Colas C et al (2013) Germline RAD51C mutations in ovarian cancer susceptibility. Clin Genet 83:332–336

    Article  CAS  PubMed  Google Scholar 

  58. Rafnar T, Gudbjartsson DF, Sulem P et al (2011) Mutations in BRIP1 confer high risk of ovarian cancer. Nat Genet 43:1104–1107

    Article  CAS  PubMed  Google Scholar 

  59. Loveday C, Turnbull C, Ramsay E et al (2011) Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 43:879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Judkins T, Leclair B, Bowles K et al (2015) Development and analytical validation of a 25-gene next generation sequencing panel that includes the BRCA1 and BRCA2 genes to assess hereditary cancer risk. BMC Cancer 15:215

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schroeder C, Faust U, Sturm M et al (2015) HBOC multi-gene panel testing: comparison of two sequencing centers. Breast Cancer Res Treat 152:129–136

    Article  CAS  PubMed  Google Scholar 

  62. Eliade M, Skrzypski J, Baurand A et al (2017) The transfer of multigene panel testing for hereditary breast and ovarian cancer to healthcare: what are the implications for the management of patients and families? Oncotarget 8:1957–1971

    PubMed  Google Scholar 

  63. Hunt CR, Gupta A, Horikoshi N et al (2012) Does PTEN loss impair DNA double-strand break repair by homologous recombination? Clin Cancer Res 18:920–922

    Article  CAS  PubMed  Google Scholar 

  64. Miyasaka A, Oda K, Ikeda Y et al (2014) Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer 14:179

    Article  PubMed  PubMed Central  Google Scholar 

  65. Uehara Y, Oda K, Ikeda Y et al (2015) Integrated copy number and expression analysis identifies profiles of whole-arm chromosomal alterations and subgroups with favorable outcome in ovarian clear cell carcinomas. PLoS One 10:e0128066

    Article  PubMed  PubMed Central  Google Scholar 

  66. Oda K, Ikeda Y, Kashiyama T et al (2016) Characterization of TP53 and PI3K signaling pathways as molecular targets in gynecologic malignancies. J Obstet Gynaecol Res 42:757–762

    Article  CAS  PubMed  Google Scholar 

  67. Khanna KK (2000) Cancer risk and the ATM gene: a continuing debate. J Natl Cancer Inst 92:795–802

    Article  CAS  PubMed  Google Scholar 

  68. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  CAS  PubMed  Google Scholar 

  69. Bolderson E, Richard DJ, Zhou BB et al (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15:6314–6320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a research program of the Project for Cancer Research and Therapeutic Evolution (P-CREATE) (to K Oda) from the Japan Agency for Medical Research and development (AMED). We thank Editage for their English editing service (www.editage.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsutoshi Oda.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oda, K., Tanikawa, M., Sone, K. et al. Recent advances in targeting DNA repair pathways for the treatment of ovarian cancer and their clinical relevance. Int J Clin Oncol 22, 611–618 (2017). https://doi.org/10.1007/s10147-017-1137-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-017-1137-7

Keywords

Navigation