Skip to main content

Advertisement

Log in

Effectiveness and safety of robot-assisted versus fluoroscopy-assisted pedicle screw implantation in scoliosis surgery: a systematic review and meta-analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

This study aimed to assess the effectiveness and safety of robot-assisted versus fluoroscopy-assisted pedicle screw implantation in scoliosis surgery. The study was registered in the PROSPERO (CRD42023471837). Two independent researchers searched PubMed, Web of Science, Cochrane Library, and China National Knowledge Infrastructure. The outcomes included operation time, pedicle screw implantation time, blood loss, number of fluoroscopic, accuracy of pedicle screw position, hospital stays, postoperative hospital stays, Visual Analog Scale (VAS), Japanese Orthopaedic Association (JOA) score, Scoliosis Research Society-22(SRS-22), cobb angle, cobb angle correction rate, sagittal vertical axis (SVA), and complications. Eight papers involving 473 patients met all the criteria. There was no significant difference between the two groups regarding the reduction in operation time. The effect of reducing the pedicle screw implantation time in the RA group was significant (WMD = -1.28; 95% CI: -1.76 to -0.80; P < 0.00001). The effect of reducing the blood loss in the RA group was significant (WMD=-105.57; 95% CI: -206.84 to -4.31; P = 0.04). The effect of reducing the number of fluoroscopic in the RA group was significant (WMD=-5.93; 95% CI: -8.24 to -3.62; P < ). The pedicle screw position of Grade A was significantly more in the RA group according to both the Gertzbein-Robbins scale and the Rampersaud scale. Compared with the FA group, the difference in the hospital stays in the RA group was not statistically significant, but the effect of reducing the postoperative hospital stays in the RA group was significant (WMD = -2.88; 95% CI: -4.13 to -1.63; P < 0.00001). The difference in the VAS, JOA, SRS-22, Cobb angle and Cobb angle correction rate, SVA, and complications between the two groups was not statistically significant. The robot-assisted technique achieved statistically significant results in terms of pedicle screw placement time, blood loss, number of fluoroscopies, accuracy of pedicle screw position, and postoperative hospital stay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Almahmoud OH, Baniodeh B, Musleh R, Asmar S, Zyada M, Qattousah H (2023) Overview of adolescent idiopathic scoliosis and associated factors: a scoping review. Int J Adolesc Med Health. https://doi.org/10.1515/ijamh-2023-0166

    Article  PubMed  Google Scholar 

  2. Mesiti BL (2021) Scoliosis: an overview. Radiol Technol 93:55–72

    PubMed  Google Scholar 

  3. Chen K, Zhao J, Yang Y, Wei X, Chen Z, Li M, Zhai X (2020) Global research trends of adult degenerative scoliosis in this decade (2010–2019): a bibliometric study. Eur Spine J 29:2970–2979. https://doi.org/10.1007/s00586-020-06574-6

    Article  PubMed  Google Scholar 

  4. Walker CT, Agarwal N, Eastlack RK, Mundis GM, Alan N, Iannacone T, Akbarnia BA, Okonkwo DO (2023) Surgical treatment of young adults with idiopathic scoliosis. J Neurosurg Spine 38:84–90. https://doi.org/10.3171/2022.7.SPINE2298

    Article  PubMed  Google Scholar 

  5. Ridderbusch K, Spiro AS, Kunkel P, Grolle B, Stucker R, Rupprecht M (2018) Strategies for treating scoliosis in early childhood. Dtsch Arztebl Int 115:371–376. https://doi.org/10.3238/arztebl.2018.0371

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brink RC, Schlosser TPC, Colo D, Vincken KL, van Stralen M, Hui SCN, Chu WCW, Cheng JCY, Castelein RM (2017) Asymmetry of the vertebral body and pedicles in the true transverse plane in adolescent idiopathic scoliosis: a CT-based study. Spine Deform 5:37–45. https://doi.org/10.1016/j.jspd.2016.08.006

    Article  PubMed  Google Scholar 

  7. Hicks JM, Singla A, Shen FH, Arlet V (2010) Complications of pedicle screw fixation in scoliosis surgery: a systematic review. Spine (Phila Pa 1976) 35:E465–470. https://doi.org/10.1097/BRS.0b013e3181d1021a

    Article  PubMed  Google Scholar 

  8. Yamout T, Orosz LD, Good CR, Jazini E, Allen B, Gum JL (2023) Technological advances in spine surgery: navigation, robotics, and augmented reality. Orthop Clin North Am 54:237–246. https://doi.org/10.1016/j.ocl.2022.11.008

    Article  PubMed  Google Scholar 

  9. Pennington Z, Brown NJ, Quadri S, Pishva S, Kuo CC, Pham MH (2023) Robotics planning in minimally invasive surgery for adult degenerative scoliosis: illustrative case. J Neurosurg Case Lessons 5. https://doi.org/10.3171/CASE22520

  10. Li C, Li H, Su J, Wang Z, Li D, Tian Y, Yuan S, Wang L, Liu X (2022) Comparison of the accuracy of pedicle screw placement using a fluoroscopy-assisted free-hand technique with robotic-assisted navigation using an O-Arm or 3D C-Arm in scoliosis surgery. Global Spine J 21925682221143076. https://doi.org/10.1177/21925682221143076

    Article  Google Scholar 

  11. Pham MH, Shah VJ, Diaz-Aguilar LD, Osorio JA, Lehman RA (2022) Minimally invasive multiple-rod constructs with robotics planning in adult spinal deformity surgery: a case series. Eur Spine J 31:95–103. https://doi.org/10.1007/s00586-021-06980-4

    Article  PubMed  Google Scholar 

  12. Sielatycki JA, Mitchell K, Leung E, Lehman RA (2022) State of the art review of new technologies in spine deformity surgery-robotics and navigation. Spine Deform 10:5–17. https://doi.org/10.1007/s43390-021-00403-6

    Article  PubMed  Google Scholar 

  13. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 18:e1003583. https://doi.org/10.1371/journal.pmed.1003583

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lenke LG, Betz RR, Harms J, Bridwell KH, Clements DH, Lowe TG, Blanke K (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169–1181

    Article  CAS  PubMed  Google Scholar 

  15. Nash CL Jr., Moe JH (1969) A study of vertebral rotation. J Bone Joint Surg Am 51:223–229

    Article  PubMed  Google Scholar 

  16. Faiz KW (2014) [VAS–visual analog scale]. Tidsskr nor Laegeforen 134:323. https://doi.org/10.4045/tidsskr.13.1145

    Article  PubMed  Google Scholar 

  17. Azimi P, Mohammadi HR, Montazeri A (2012) An outcome measure of functionality and pain in patients with lumbar disc herniation: a validation study of the Japanese Orthopedic Association (JOA) score. J Orthop Sci 17:341–345. https://doi.org/10.1007/s00776-012-0232-x

    Article  PubMed  Google Scholar 

  18. Bridwell KH, Cats-Baril W, Harrast J, Berven S, Glassman S, Farcy JP, Horton WC, Lenke LG, Baldus C, Radake T (2005) The validity of the SRS-22 instrument in an adult spinal deformity population compared with the Oswestry and SF-12: a study of response distribution, concurrent validity, internal consistency, and reliability. Spine (Phila Pa 1976) 30:455–461. https://doi.org/10.1097/01.brs.0000153393.82368.6b

    Article  PubMed  Google Scholar 

  19. Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15:11–14. https://doi.org/10.1097/00007632-199001000-00004

    Article  CAS  PubMed  Google Scholar 

  20. Rampersaud YR, Pik JH, Salonen D, Farooq S (2005) Clinical accuracy of fluoroscopic computer-assisted pedicle screw fixation: a CT analysis. Spine (Phila Pa 1976) 30:E183–190. https://doi.org/10.1097/01.brs.0000157490.65706.38

    Article  PubMed  Google Scholar 

  21. Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernan MA, Hopewell S, Hrobjartsson A, Junqueira DR, Juni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  PubMed  Google Scholar 

  22. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hrobjartsson A, Kirkham J, Juni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L, Santaguida PL, Schunemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC, Waddington H, Waters E, Wells GA, Whiting PF, Higgins JP (2016) ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355:i4919. https://doi.org/10.1136/bmj.i4919

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guyatt GH, Oxman AD, Schunemann HJ, Tugwell P, Knottnerus A (2011) GRADE guidelines: a new series of articles in the journal of clinical epidemiology. J Clin Epidemiol 64:380–382. https://doi.org/10.1016/j.jclinepi.2010.09.011

    Article  PubMed  Google Scholar 

  24. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21:1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  25. Zhai GW, Gao YZ, Gao K, Zhang JY, Yu ZH, Sheng WC, Yang G (2019) Robot-assisted versus traditional posterior pedicle screw internal fixation in the treatment of scoliosis. J Chin Practical Diagnosis Therapy 33:636–640. https://doi.org/10.13507/j.issn.1674-3474.2019.07.003

    Article  Google Scholar 

  26. Yang K, Song PW, Zhang YS, Dong FL, Li W, Zhang RJ, Qian J, Shen CL (2022) Application of robot assisted nail placement in adult degenerative scoliosis surgery. J Cervicodynia Lumbodynia 43:517–519. https://doi.org/10.3969/j.issn.1005-7234.2022.04.013

    Article  Google Scholar 

  27. Xin XM, Gao MX, Zhang F, Chi F, Feng JC, Luo WY (2023) Application of orthopedic robot-assisted screw placement in the correction of adolescent idiopathic scoliosis. Chin J Tissue Eng Res 27:5790–5794. https://doi.org/10.12307/2023.775

    Article  Google Scholar 

  28. Li C, Sun XG, Li H, Tian YH, Yuan SM, Liu XY, Wang LL (2023) Clinical application of robotic-assisted navigation based on 3D C-arm in 44 cases of scoliosis surgery. J Shandong Univ (Health Science) 61:107–114. https://doi.org/10.6040/j.issn.1671-7554.0.2022.1116

    Article  CAS  Google Scholar 

  29. Hou C, Yang H, Chen Y, Yang Y, Zhang B, Chen K, Li M, Yang M, Chen K (2022) Comparison of robot versus fluoroscopy-assisted pedicle screw instrumentation in adolescent idiopathic scoliosis surgery: a retrospective study. Front Surg 9:1085580. https://doi.org/10.3389/fsurg.2022.1085580

    Article  PubMed  Google Scholar 

  30. Chen H, Zhu X, Dong L, Liu T (2021) Study on robot-assisted pedicle screw implantation in adolescent idiopathic scoliosis surgery. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 35:1457–1462. https://doi.org/10.7507/1002-1892.202106072

    Article  PubMed  Google Scholar 

  31. Chen X, Feng F, Yu X, Wang S, Tu Z, Han Y, Li Q, Chen H, Chen Z, Lao L, Shen H (2020) Robot-assisted orthopedic surgery in the treatment of adult degenerative scoliosis: a preliminary clinical report. J Orthop Surg Res 15:282. https://doi.org/10.1186/s13018-020-01796-2

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cao ZL, Xuan TH, Yu M, Luo RS, Lu WH (2021) Clinical application of TIANJI orthopedic surgical robot in patients treated by adolescent idiopathic scoliosis surgery. Med Equip 34:3–6. https://doi.org/10.3969/j.issn.1002-2376.2021.17.002

    Article  Google Scholar 

  33. Lee NJ, Leung E, Buchanan IA, Geiselmann M, Coury JR, Simhon ME, Zuckerman S, Buchholz AL, Pollina J, Jazini E, Haines C, Schuler TC, Good CR, Lombardi J, Lehman RA (2022) A multicenter study of the 5-year trends in robot-assisted spine surgery outcomes and complications. J Spine Surg 8:9–20. https://doi.org/10.21037/jss-21-102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li C, Wang Z, Li D, Tian Y, Yuan S, Wang L, Liu X (2023) Safety and accuracy of cannulated pedicle screw placement in scoliosis surgery: a comparison of robotic-navigation, O-arm-based navigation, and freehand techniques. Eur Spine J 32:3094–3104. https://doi.org/10.1007/s00586-023-07710-8

    Article  PubMed  Google Scholar 

  35. Fan Y, Peng Du J, Liu JJ, Zhang JN, Liu SC, Hao DJ (2018) Radiological and clinical differences among three assisted technologies in pedicle screw fixation of adult degenerative scoliosis. Sci Rep 8:890. https://doi.org/10.1038/s41598-017-19054-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Devito DP, Woo R (2021) History and evolution of spinal robotics in pediatric spinal deformity. Int J Spine Surg 15:S65–S73. https://doi.org/10.14444/8141

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morse KW, Heath M, Avrumova F, Defrancesco C, Fabricant PD, Lebl DR, Widmann RF (2021) Comprehensive error analysis for robotic-assisted placement of pedicle screws in pediatric spinal deformity: the initial learning curve. J Pediatr Orthop 41:e524–e532. https://doi.org/10.1097/BPO.0000000000001842

    Article  PubMed  Google Scholar 

  38. Diltz ZR, Sheffer BJ (2023) Intraoperative navigation and robotics in pediatric spinal deformity. Orthop Clin North Am 54:201–207. https://doi.org/10.1016/j.ocl.2022.11.005

    Article  PubMed  Google Scholar 

  39. Tanaka M, Schol J, Sakai D, Sako K, Yamamoto K, Yanagi K, Hiyama A, Katoh H, Sato M, Watanabe M (2023) Low radiation protocol for intraoperative robotic C-Arm can enhance adolescent idiopathic scoliosis deformity correction accuracy and safety. Global Spine J 21925682221147867. https://doi.org/10.1177/21925682221147867

  40. Sensakovic WF, O’Dell MC, Agha A, Woo R, Varich L (2017) CT radiation dose reduction in robot-assisted pediatric spinal surgery. Spine (Phila Pa 1976) 42:E417–E424. https://doi.org/10.1097/BRS.0000000000001846

    Article  PubMed  Google Scholar 

  41. Cheung ZB, Selverian S, Cho BH, Ball CJ, Kang-Wook Cho S (2019) Idiopathic scoliosis in children and adolescents: emerging techniques in surgical treatment. World Neurosurg 130:e737–e742. https://doi.org/10.1016/j.wneu.2019.06.207

    Article  PubMed  Google Scholar 

  42. Kwan MK, Chiu CK, Gani SMA, Wei CCY (2017) Accuracy and safety of pedicle screw placement in adolescent idiopathic scoliosis patients: a review of 2020 screws using computed tomography assessment. Spine (Phila Pa 1976) 42:326–335. https://doi.org/10.1097/BRS.0000000000001738

    Article  PubMed  Google Scholar 

  43. Gonzalez D, Ghessese S, Cook D, Hedequist D (2021) Initial intraoperative experience with robotic-assisted pedicle screw placement with stealth navigation in pediatric spine deformity: an evaluation of the first 40 cases. J Robot Surg 15:687–693. https://doi.org/10.1007/s11701-020-01159-3

    Article  PubMed  Google Scholar 

  44. Shaw KA, Murphy JS, Devito DP (2018) Accuracy of robot-assisted pedicle screw insertion in adolescent idiopathic scoliosis: is triggered electromyographic pedicle screw stimulation necessary? J Spine Surg 4:187–194. https://doi.org/10.21037/jss.2018.04.01

    Article  PubMed  PubMed Central  Google Scholar 

  45. Macke JJ, Woo R, Varich L (2016) Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg 10:145–150. https://doi.org/10.1007/s11701-016-0587-7

    Article  PubMed  Google Scholar 

  46. Akazawa T, Torii Y, Ueno J, Iinuma M, Yoshida A, Tomochika K, Hideshima T, Ohtori S, Niki H (2023) Comparison of radiographic and patient-reported outcomes after surgery in adolescent idiopathic scoliosis between robotics and navigation: an analysis using propensity score matching. Cureus 15:e49061. https://doi.org/10.7759/cureus.49061

    Article  PubMed  PubMed Central  Google Scholar 

  47. Akazawa T, Torii Y, Ueno J, Umehara T, Iinuma M, Yoshida A, Tomochika K, Ohtori S, Niki H (2023) Accuracy of computer-assisted pedicle screw placement for adolescent idiopathic scoliosis: a comparison between robotics and navigation. Eur Spine J 32:651–658. https://doi.org/10.1007/s00586-022-07502-6

    Article  PubMed  Google Scholar 

  48. Patel AV, White CA, Schwartz JT, Pitaro NL, Shah KC, Singh S, Arvind V, Kim JS, Cho SK (2021) Emerging technologies in the treatment of adult spinal deformity. Neurospine 18:417–427. https://doi.org/10.14245/ns.2142412.206

    Article  PubMed  PubMed Central  Google Scholar 

  49. Cronin PK, Poelstra K, Protopsaltis TS (2021) Role of robotics in adult spinal deformity. Int J Spine Surg 15:S56–S64. https://doi.org/10.14444/8140

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ueno J, Torii Y, Umehra T, Iinuma M, Yoshida A, Tomochika K, Niki H, Akazawa T (2023) Robotics is useful for less-experienced surgeons in spinal deformity surgery. Eur J Orthop Surg Traumatol 33:1805–1810. https://doi.org/10.1007/s00590-022-03362-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledged the Department of Statistics, Public Health College of Jilin University for their suggestions concerning the statistical analysis in this manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Qing-san Zhu and Yu-hang Zhu designed the study protocol. Xu Wang and Hao-xuan Li managed the literature search and data acquisition. Xu Wang and Yu-hang Zhu performed the statistical analysis and drafted the manuscript. Qing-san Zhu provided critical revisions to the manuscript. Qing-san Zhu resolved ambiguities during the study and gave final approval of the manuscript. Yu-hang Zhu and Qing-san Zhu contributed equally to this study and should be considered co-corresponding authors.

Corresponding author

Correspondence to Yu-hang Zhu.

Ethics declarations

Ethics approval

This article does not contain any studies with human or animal subjects performed by any authors.

Consent to participate

This article does not contain any studies with human or animal subjects performed by any authors.

Consent to publish

This article does not contain any studies with human or animal subjects performed by any authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, Hx., Zhu, Qs. et al. Effectiveness and safety of robot-assisted versus fluoroscopy-assisted pedicle screw implantation in scoliosis surgery: a systematic review and meta-analysis. Neurosurg Rev 47, 108 (2024). https://doi.org/10.1007/s10143-024-02340-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-024-02340-0

Keywords

Navigation