Skip to main content
Log in

Single fraction and hypofractionated radiosurgery for perioptic meningiomas—tumor control and visual outcomes: a systematic review and meta-analysis

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Perioptic meningiomas, defined as those that are less than 3 mm from the optic apparatus, are challenging to treat with stereotactic radiosurgery (SRS). Tumor control must be weighed against the risk of radiation-induced optic neuropathy (RION), as both tumor progression and RION can lead to visual decline. We performed a systematic review and meta-analysis of single fraction SRS and hypofractionated radiosurgery (hfRS) for perioptic meningiomas, evaluating tumor control and visual preservation rates. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we reviewed articles published between 1968 and December 8, 2022. We retained 5 studies reporting 865 patients, 438 cases treated in single fraction, while 427 with hfRS. For single fraction SRS, the overall rate of tumor control was 95.1%, with actuarial rates at 5 and 10 years of 96% and 89%, respectively; tumor progression was 7.7%. The rate of visual stability was 90.4%, including visual improvement in 29.3%. The rate of visual decline was 9.6%, including blindness in 1.2%. For hfRS, the overall rate of tumor control was 95.6% (range 92.1–99.1, p < 0.001); tumor progression was 4.4% (range 0.9–7.9, p = 0.01). Overall rate of visual stability was 94.9% (range 90.9–98.9, p < 0.001), including visual improvement in 22.7% (range 5.0–40.3, p = 0.01); visual decline was 5.1% (range 1.1–9.1, p = 0.013). SRS is an effective and safe treatment option for perioptic meningiomas. Both hypofractionated regimens and single fraction SRS can be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99:307–314. https://doi.org/10.1007/s11060-010-0386-3

    Article  PubMed  PubMed Central  Google Scholar 

  2. Leber KA, Bergloff J, Langmann G, Mokry M, Schrottner O, Pendl G (1995) Radiation sensitivity of visual and oculomotor pathways. Stereotact Funct Neurosurg 64(Suppl 1):233–238. https://doi.org/10.1159/000098784

    Article  PubMed  Google Scholar 

  3. Stafford SL, Pollock BE, Leavitt JA, Foote RL, Brown PD, Link MJ, Gorman DA, Schomberg PJ (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55:1177–1181. https://doi.org/10.1016/s0360-3016(02)04380-8

    Article  PubMed  Google Scholar 

  4. Wright JE (1977) Primary optic nerve meningiomas: clinical presentation and management. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 83:617–625

    PubMed  CAS  Google Scholar 

  5. Shields JA, Shields CL, Scartozzi R (2004) Survey of 1264 patients with orbital tumors and simulating lesions: the 2002 Montgomery Lecture, part 1. Ophthalmology 111:997–1008. https://doi.org/10.1016/j.ophtha.2003.01.002

    Article  PubMed  Google Scholar 

  6. Taha AN, Erkmen K, Dunn IF, Pravdenkova S, Al-Mefty O (2011) Meningiomas involving the optic canal: pattern of involvement and implications for surgical technique. Neurosurg Focus 30:E12. https://doi.org/10.3171/2011.2.FOCUS1118

    Article  PubMed  Google Scholar 

  7. Starnoni D, Tuleasca C, Levivier M, Daniel RT (2022) Surgery for clinoidal meningiomas with cavernous sinus extension: near-total excision and chiasmopexy. Acta Neurochir (Wien) 164:2511–2515. https://doi.org/10.1007/s00701-022-05281-z

    Article  PubMed  Google Scholar 

  8. Starnoni D, Tuleasca C, Giammattei L, Cossu G, Bruneau M, Berhouma M, Cornelius JF, Cavallo L, Froelich S, Jouanneau E, Meling TR, Paraskevopoulos D, Schroeder H, Tatagiba M, Zazpe I, Sufianov A, Sughrue ME, Chacko AG, Benes V, Gonzalez-Lopez P, Roche PH, Levivier M, Messerer M, Daniel RT (2021) Surgical management of anterior clinoidal meningiomas: consensus statement on behalf of the EANS skull base section. Acta Neurochir (Wien) 163:3387–3400. https://doi.org/10.1007/s00701-021-04964-3

    Article  PubMed  CAS  Google Scholar 

  9. Giammattei L, Starnoni D, Levivier M, Messerer M, Daniel RT (2019) Surgery for clinoidal meningiomas: case series and meta-analysis of outcomes and complications. World Neurosurg 129:e700–e717. https://doi.org/10.1016/j.wneu.2019.05.253

    Article  PubMed  Google Scholar 

  10. Andrews BT, Wilson CB (1988) Suprasellar meningiomas: the effect of tumor location on postoperative visual outcome. J Neurosurg 69:523–528. https://doi.org/10.3171/jns.1988.69.4.0523

    Article  PubMed  CAS  Google Scholar 

  11. Margalit NS, Lesser JB, Moche J, Sen C (2003) Meningiomas involving the optic nerve: technical aspects and outcomes for a series of 50 patients. Neurosurgery 53:532–523. https://doi.org/10.1227/01.neu.0000079506.75164.f4. (discussion 532-523)

    Article  Google Scholar 

  12. Nozaki K, Kikuta K, Takagi Y, Mineharu Y, Takahashi JA, Hashimoto N (2008) Effect of early optic canal unroofing on the outcome of visual functions in surgery for meningiomas of the tuberculum sellae and planum sphenoidale. Neurosurgery 62:839–844. https://doi.org/10.1227/01.neu.0000318169.75095.cb. (discussion 844-836)

    Article  PubMed  Google Scholar 

  13. Schick U, Dott U, Hassler W (2004) Surgical management of meningiomas involving the optic nerve sheath. J Neurosurg 101:951–959. https://doi.org/10.3171/jns.2004.101.6.0951

    Article  PubMed  Google Scholar 

  14. Kondziolka D, Mathieu D, Lunsford LD, Martin JJ, Madhok R, Niranjan A, Flickinger JC (2008) Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery 62:53–58. https://doi.org/10.1227/01.NEU.0000311061.72626.0D. (discussion 58-60)

    Article  PubMed  Google Scholar 

  15. Lee JYK, Kondziolka D, Flickinger JC, Lunsford LD (2007) Radiosurgery for intracranial meningiomas. Prog Neurol Surg 20:142–149. https://doi.org/10.1159/000100101

    Article  PubMed  Google Scholar 

  16. Mansouri A, Guha D, Klironomos G, Larjani S, Zadeh G, Kondziolka D (2015) Stereotactic radiosurgery for intracranial meningiomas: current concepts and future perspectives. Neurosurgery 76:362–371. https://doi.org/10.1227/NEU.0000000000000633

    Article  PubMed  Google Scholar 

  17. Pollock BE, Stafford SL, Utter A, Giannini C, Schreiner SA (2003) Stereotactic radiosurgery provides equivalent tumor control to Simpson Grade 1 resection for patients with small- to medium-size meningiomas. Int J Radiat Oncol Biol Phys 55:1000–1005. https://doi.org/10.1016/s0360-3016(02)04356-0

    Article  PubMed  Google Scholar 

  18. Santacroce A, Tuleasca C, Liscak R, Motti E, Lindquist C, Radatz M, Gatterbauer B, Lippitz BE, Martinez Alvarez R, Martinez Moreno N, Kamp MA, Sandvei Skeie B, Schipmann S, Longhi M, Unger F, Sabin I, Mindermann T, Bundschuh O, Horstmann GA, van Eck A, Walier M, Berres M, Nakamura M, Steiger HJ, Hanggi D, Fortmann T, Zawy Alsofy S, Regis J, Ewelt C (2022) Stereotactic radiosurgery for benign cavernous sinus meningiomas: a multicentre study and review of the literature. Cancers (Basel) 14. https://doi.org/10.3390/cancers14164047

  19. Dufour H, Muracciole X, Metellus P, Regis J, Chinot O, Grisoli F (2001) Long-term tumor control and functional outcome in patients with cavernous sinus meningiomas treated by radiotherapy with or without previous surgery: is there an alternative to aggressive tumor removal? Neurosurgery 48:285–294. https://doi.org/10.1097/00006123-200102000-00006. (discussion 294-286)

    Article  PubMed  CAS  Google Scholar 

  20. Pollock BE, Link MJ, Leavitt JA, Stafford SL (2014) Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery 75:456–460. https://doi.org/10.1227/NEU.0000000000000457. (discussion 460)

    Article  PubMed  Google Scholar 

  21. Minniti G, Amichetti M, Enrici RM (2009) Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat Oncol 4:42. https://doi.org/10.1186/1748-717X-4-42

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milano MT, Grimm J, Soltys SG, Yorke E, Moiseenko V, Tome WA, Sahgal A, Xue J, Ma L, Solberg TD, Kirkpatrick JP, Constine LS, Flickinger JC, Marks LB, El Naqa I (2021) Single- and multi-fraction stereotactic radiosurgery dose tolerances of the optic pathways. Int J Radiat Oncol Biol Phys 110:87–99. https://doi.org/10.1016/j.ijrobp.2018.01.053

    Article  PubMed  Google Scholar 

  23. Marchetti M, Conti A, Beltramo G, Pinzi V, Pontoriero A, Tramacere I, Senger C, Pergolizzi S, Fariselli L (2019) Multisession radiosurgery for perioptic meningiomas: medium-to-long term results from a CyberKnife cooperative study. J Neurooncol 143:597–604. https://doi.org/10.1007/s11060-019-03196-x

    Article  PubMed  Google Scholar 

  24. Conti A, Pontoriero A, Midili F, Iati G, Siragusa C, Tomasello C, La Torre D, Cardali SM, Pergolizzi S, De Renzis C (2015) CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations. Springerplus 4:37. https://doi.org/10.1186/s40064-015-0804-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. McMahon SJ (2018) The linear quadratic model: usage, interpretation and challenges. Phys Med Biol 64:01TR01. https://doi.org/10.1088/1361-6560/aaf26a

    Article  PubMed  CAS  Google Scholar 

  26. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Reprint–preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther 89:873–880

    Article  PubMed  Google Scholar 

  27. Asuzu DT, Bunevicius A, Kormath Anand R, Suleiman M, Nabeel AM, Reda WA, Tawadros SR, Abdel Karim K, El-Shehaby AMN, Emad Eldin RM, Chytka T, Liscak R, Sheehan K, Sheehan D, Perez Caceres M, Mathieu D, Lee CC, Yang HC, Picozzi P, Franzini A, Attuati L, Speckter H, Olivo J, Patel S, Cifarelli CP, Cifarelli DT, Hack JD, Strickland BA, Zada G, Chang EL, Fakhoury KR, Rusthoven CG, Warnick RE, Sheehan JP (2022) Clinical and radiologic outcomes after stereotactic radiosurgery for meningiomas in direct contact with the optic apparatus: an international multicenter study. J Neurosurg 136:1070–1076. https://doi.org/10.3171/2021.3.JNS21328

    Article  PubMed  Google Scholar 

  28. Bunevicius A, Anand RK, Suleiman M, Nabeel AM, Reda WA, Tawadros SR, Abdelkarim K, El-Shehaby AMN, Emad RM, Chytka T, Liscak R, Sheehan K, Sheehan D, Caceres MP, Mathieu D, Lee CC, Yang HC, Picozzi P, Franzini A, Attuati L, Speckter H, Olivo J, Patel S, Cifarelli CP, Cifarelli DT, Hack JD, Strickland BA, Zada G, Chang EL, Fakhoury KR, Rusthoven CG, Warnick RE, Sheehan J (2021) Stereotactic radiosurgery for perioptic meningiomas: an international, multicenter study. Neurosurgery 88:828–837. https://doi.org/10.1093/neuros/nyaa544

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen HY, Chuang CC, Chen HC, Wei KC, Chang CN, Liu ZH, Lee CC, Wang CC, Pai PC, Hsu PW (2020) Clinical outcomes of fractionated stereotactic radiosurgery in treating perioptic meningiomas and schwannomas: a single-institutional experience. J Clin Neurosci 81:409–415. https://doi.org/10.1016/j.jocn.2020.09.058

    Article  PubMed  Google Scholar 

  30. Marchetti M, Bianchi S, Pinzi V, Tramacere I, Fumagalli ML, Milanesi IM, Ferroli P, Franzini A, Saini M, DiMeco F, Fariselli L (2016) Multisession radiosurgery for sellar and parasellar benign meningiomas: long-term tumor growth control and visual outcome. Neurosurgery 78:638–646. https://doi.org/10.1227/NEU.0000000000001073

    Article  PubMed  Google Scholar 

  31. Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N (2000) Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90–05. Int J Radiat Oncol Biol Phys 47:291–298. https://doi.org/10.1016/s0360-3016(99)00507-6

    Article  PubMed  CAS  Google Scholar 

  32. NIH National Cancer Institute (2021) CTEP - Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events (CTCAE).  https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_40

  33. Shrieve DC, Hazard L, Boucher K, Jensen RL (2004) Dose fractionation in stereotactic radiotherapy for parasellar meningiomas: radiobiological considerations of efficacy and optic nerve tolerance. J Neurosurg 101(Suppl 3):390–395. https://doi.org/10.3171/jns.2004.101.supplement3.0390

    Article  PubMed  Google Scholar 

  34. Dedeciusova M, Komarc M, Faouzi M, Levivier M, Tuleasca C (2022) Tumor control and radiobiological fingerprint after Gamma Knife radiosurgery for posterior fossa meningiomas: a series of 46 consecutive cases. J Clin Neurosci 100:196–203. https://doi.org/10.1016/j.jocn.2022.04.031

    Article  PubMed  Google Scholar 

  35. Graffeo CS, Donegan D, Erickson D, Brown PD, Perry A, Link MJ, Young WF, Pollock BE (2020) The impact of insulin-like growth factor index and biologically effective dose on outcomes after stereotactic radiosurgery for acromegaly: cohort study. Neurosurgery 87:538–546. https://doi.org/10.1093/neuros/nyaa054

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tuleasca C, Faouzi M, Maeder P, Maire R, Knisely J, Levivier M (2021) Biologically effective dose correlates with linear tumor volume changes after upfront single-fraction stereotactic radiosurgery for vestibular schwannomas. Neurosurg Rev 44:3527–3537. https://doi.org/10.1007/s10143-021-01538-w

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tuleasca C, Paddick I, Hopewell JW, Jones B, Millar WT, Hamdi H, Porcheron D, Levivier M, Regis J (2020) Establishment of a therapeutic ratio for gamma knife radiosurgery of trigeminal neuralgia: the critical importance of biologically effective dose versus physical dose. World Neurosurg 134:e204–e213. https://doi.org/10.1016/j.wneu.2019.10.021

    Article  PubMed  Google Scholar 

  38. Tuleasca C, Peciu-Florianu I, Leroy HA, Vermandel M, Faouzi M, Reyns N (2020) Biologically effective dose and prediction of obliteration of unruptured arteriovenous malformations treated by upfront Gamma Knife radiosurgery: a series of 149 consecutive cases. J Neurosurg 134:1901–1911. https://doi.org/10.3171/2020.4.JNS201250

    Article  PubMed  Google Scholar 

  39. Mihalcea O, Arnold AC (2008) Side effect of head and neck radiotherapy: optic neuropathy. Oftalmologia 52:36–40

    PubMed  Google Scholar 

  40. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159. https://doi.org/10.1126/science.1082504

    Article  PubMed  CAS  Google Scholar 

  41. Nagle PW, Hosper NA, Barazzuol L, Jellema AL, Baanstra M, van Goethem MJ, Brandenburg S, Giesen U, Langendijk JA, van Luijk P, Coppes RP (2018) Lack of DNA damage response at low radiation doses in adult stem cells contributes to organ dysfunction. Clin Cancer Res 24:6583–6593. https://doi.org/10.1158/1078-0432.CCR-18-0533

    Article  PubMed  CAS  Google Scholar 

  42. Cohen-Inbar O, Lee CC, Schlesinger D, Xu Z, Sheehan JP (2016) Long-term results of stereotactic radiosurgery for skull base meningiomas. Neurosurgery 79:58–68. https://doi.org/10.1227/NEU.0000000000001045

    Article  PubMed  Google Scholar 

  43. Sheehan JP, Williams BJ, Yen CP (2010) Stereotactic radiosurgery for WHO grade I meningiomas. J Neurooncol 99:407–416. https://doi.org/10.1007/s11060-010-0363-x

    Article  PubMed  Google Scholar 

  44. Lee CC, Trifiletti DM, Sahgal A, DeSalles A, Fariselli L, Hayashi M, Levivier M, Ma L, Alvarez RM, Paddick I, Regis J, Ryu S, Slotman B, Sheehan J (2018) Stereotactic radiosurgery for benign (World Health Organization grade I) cavernous sinus meningiomas-International Stereotactic Radiosurgery Society (ISRS) practice guideline: a systematic review. Neurosurgery 83:1128–1142. https://doi.org/10.1093/neuros/nyy009

    Article  PubMed  Google Scholar 

  45. Kondziolka D, Lunsford LD, Flickinger JC (1999) The radiobiology of radiosurgery. Neurosurg Clin N Am 10:157–166

    Article  PubMed  CAS  Google Scholar 

  46. Danesh-Meyer HV (2008) Radiation-induced optic neuropathy. J Clin Neurosci 15:95–100. https://doi.org/10.1016/j.jocn.2007.09.004

    Article  PubMed  Google Scholar 

  47. Tuleasca C, Leroy HA, Regis J, Levivier M (2016) Gamma Knife radiosurgery for cervical spine lesions: expanding the indications in the new era of Icon. Acta Neurochir 158:2235–2236. https://doi.org/10.1007/s00701-016-2962-6

    Article  PubMed  Google Scholar 

  48. Conti A, Pontoriero A, Salamone I, Siragusa C, Midili F, La Torre D, Calisto A, Granata F, Romanelli P, De Renzis C, Tomasello F (2009) Protecting venous structures during radiosurgery for parasagittal meningiomas. Neurosurg Focus 27:E11. https://doi.org/10.3171/2009.8.FOCUS09-157

    Article  PubMed  Google Scholar 

  49. Nguyen JH, Chen CJ, Lee CC, Yen CP, Xu Z, Schlesinger D, Sheehan JP (2014) Multisession gamma knife radiosurgery: a preliminary experience with a noninvasive, relocatable frame. World Neurosurg 82:1256–1263. https://doi.org/10.1016/j.wneu.2014.07.042

    Article  PubMed  Google Scholar 

  50. Timmerman RD (2008) An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol 18:215–222. https://doi.org/10.1016/j.semradonc.2008.04.001

    Article  PubMed  Google Scholar 

  51. Speckter H, Santana J, Miches I, Hernandez G, Bido-Franco J, Rivera D, Suazo L, Valenzuela S, Garcia J, Stoeter P (2019) Assessment of the alpha/beta ratio of the optic pathway to adjust hypofractionated stereotactic radiosurgery regimens for perioptic lesions. J Radiat Oncol 8. https://doi.org/10.1007/s13566-019-00398-8

  52. Bloch O, Sun M, Kaur G, Barani IJ, Parsa AT (2012) Fractionated radiotherapy for optic nerve sheath meningiomas. J Clin Neurosci 19:1210–1215. https://doi.org/10.1016/j.jocn.2012.02.010

    Article  PubMed  Google Scholar 

  53. Onodera S, Aoyama H, Katoh N, Taguchi H, Yasuda K, Yoshida D, Surtherland K, Suzuki R, Ishikawa M, Gerard B, Terasaka S, Shirato H (2011) Long-term outcomes of fractionated stereotactic radiotherapy for intracranial skull base benign meningiomas in single institution. Jpn J Clin Oncol 41:462–468. https://doi.org/10.1093/jjco/hyq231

    Article  PubMed  Google Scholar 

  54. Minniti G, Clarke E, Cavallo L, Osti MF, Esposito V, Cantore G, Cappabianca P, Enrici RM (2011) Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas. Radiat Oncol 6:36. https://doi.org/10.1186/1748-717X-6-36

  55. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76:S28-35. https://doi.org/10.1016/j.ijrobp.2009.07.1753

    Article  PubMed  Google Scholar 

  56. Maguire PD, Clough R, Friedman AH, Halperin EC (1999) Fractionated external-beam radiation therapy for meningiomas of the cavernous sinus. Int J Radiat Oncol Biol Phys 44:75–79. https://doi.org/10.1016/s0360-3016(98)00558-6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Article review, article selection, and meta-analysis were performed by David Peters and Constantin Tuleasca. The first draft of the manuscript was written by David Peters and Constantin Tuleasca, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to David R. Peters.

Ethics declarations

Ethical approval

No ethical approval was required for this meta-analysis of previously published data.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, D.R., Asher, A., Conti, A. et al. Single fraction and hypofractionated radiosurgery for perioptic meningiomas—tumor control and visual outcomes: a systematic review and meta-analysis. Neurosurg Rev 46, 287 (2023). https://doi.org/10.1007/s10143-023-02197-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02197-9

Keywords

Navigation