Skip to main content
Log in

Association between higher systemic immune inflammation index (SII) and deep vein thrombosis (DVT) in patients with aneurysmal subarachnoid hemorrhage (aSAH) after endovascular treatment

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Inflammation contributes to deep vein thrombosis (DVT) formation in patients with aSAH after endovascular treatment. The relationship between systemic immune-inflammatory index (SII) as an inflammatory marker and DVT formation remains unclear. Thus, this study aims to evaluate the association between SII and aSAH-associated DVT following endovascular treatment. We enrolled 562 consecutive patients with aSAH after endovascular treatment at three centers from January 2019 to September 2021. The endovascular treatments included simple coil embolization and stent-assisted coil embolization. Deep venous thrombosis (DVT) was assessed by Color Doppler ultrasonography (CDUS). Multivariate logistic regression analysis was used to establish the model. We assessed the association of the SII, neutrophil-to-lymphocyte ratio (NLR), the systemic inflammatory response index (SIRI), platelet-lymphocyte ratio (PLR), and DVT by using restricted cubic spline (RCS). ASAH-associated DVT was found in 136 (24.20%) patients. Based on the multiple logistic regression analysis, the correlation was found between aSAH-associated DVT and elevated SII (fourth quartile) (adjusted odds ratio = 8.20 [95% confidence interval, 3.76–17.92]; p < 0.001 [p for trend < 0.001]), elevated NLR (fourth quartile) (adjusted odds ratio = 6.94 [95% confidence interval, 3.24–14.89]; p < 0.001 [p for trend < 0.001]), elevated SIRI (fourth quartile) (adjusted odds ratio = 4.82 [95% confidence interval, 2.36–9.84]; p < 0.001 [p for trend < 0.001]), and elevated PLR (fourth quartile) (adjusted odds ratio = 5.49 [95% confidence interval, 2.61–11.57]; p < 0.001 [p for trend < 0.001]). The increased SII was correlated with the formation of aSAH-associated DVT after endovascular treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

We enrolled patients at three centers (Beijing Tiantan Hospital, Capital Medical University; Beijing Tongren Hospital, Capital Medical University; The Third Xiangya Hospital, Central South University) from January 2019 to September 2021. If necessary, we can provide the data set to the editor.

References

  1. Voellger B, Rupa R, Arndt C, Carl B, Nimsky C (2019) Outcome after interdisciplinary treatment for aneurysmal subarachnoid hemorrhage – a single center experience. Medicina 55(11):724. https://doi.org/10.3390/medicina55110724

  2. Cheng X, Zhang L, Xie N, Ma Y, Lian Y (2016) High plasma levels of D-dimer are independently associated with a heightened risk of deep vein thrombosis in patients with intracerebral hemorrhage. Molec Neurobiol 53:5671–8. https://doi.org/10.1007/s12035-015-9487-5

    Article  CAS  Google Scholar 

  3. Liang C, Su K, Liu J, Dogan A, Hinson H (2015) Timing of deep vein thrombosis formation after aneurysmal subarachnoid hemorrhage. J Neurosurg 123:891–6. https://doi.org/10.3171/2014.12.Jns141288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Geraldini F, De Cassai A, Correale C, Andreatta G, Grandis M, Navalesi P et al (2020) Predictors of deep-vein thrombosis in subarachnoid hemorrhage: a retrospective analysis. Acta Neurochir 162:2295–301. https://doi.org/10.1007/s00701-020-04455-x

    Article  PubMed  Google Scholar 

  5. Budnik I, Brill A (2018) Immune factors in deep vein thrombosis initiation. Trends Immunol 39:610–23. https://doi.org/10.1016/j.it.2018.04.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. von Brühl M, Stark K, Steinhart A, Chandraratne S, Konrad I, Lorenz M et al (2012) Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 209:819–35. https://doi.org/10.1084/jem.20112322

    Article  CAS  Google Scholar 

  7. Brill A, Fuchs T, Chauhan A, Yang J, De Meyer S, Köllnberger M et al (2011) von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood 117:1400–7. https://doi.org/10.1182/blood-2010-05-287623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Zhu X, Yao Y, Yao C, Jiang Q (2018) Predictive value of lymphocyte to monocyte ratio and monocyte to high-density lipoprotein ratio for acute deep vein thrombosis after total joint arthroplasty: a retrospective study. J Orthop Surg Res 13:211. https://doi.org/10.1186/s13018-018-0910-2

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen L, Pandey S, Shen R, Xu Y, Zhang Q (2021) Increased systemic immune-inflammation index is associated with delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage patients. Front Neurol 12:745175. https://doi.org/10.3389/fneur.2021.745175

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nøst T, Alcala K, Urbarova I, Byrne K, Guida F, Sandanger T et al (2021) Systemic inflammation markers and cancer incidence in the UK Biobank. Europ J Epidemiol 36:841–8. https://doi.org/10.1007/s10654-021-00752-6

    Article  CAS  Google Scholar 

  11. Jomrich G, Paireder M, Kristo I, Baierl A, Ilhan-Mutlu A, Preusser M et al (2021) High systemic immune-inflammation index is an adverse prognostic factor for patients with gastroesophageal adenocarcinoma. Ann Surg 273:532–41. https://doi.org/10.1097/sla.0000000000003370

    Article  PubMed  Google Scholar 

  12. Li R, Lin F, Chen Y, Lu J, Han H, Yan D et al (2021) In-hospital complication-related risk factors for discharge and 90-day outcomes in patients with aneurysmal subarachnoid hemorrhage after surgical clipping and endovascular coiling: a propensity score-matched analysis. J Neurosurg 31:1–12. https://doi.org/10.3171/2021.10.Jns211484

  13. Hu B, Yang X, Xu Y, Sun Y, Sun C, Guo W et al (2014) Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res 20:6212–22. https://doi.org/10.1158/1078-0432.Ccr-14-0442

    Article  PubMed  CAS  Google Scholar 

  14. Tapson V, Carroll B, Davidson B, Elliott C, Fedullo P, Hales C et al (1999) The diagnostic approach to acute venous thromboembolism. Clinical practice guideline. American Thoracic Society. Amer J Respir Crit Care Med 160:1043–66. https://doi.org/10.1164/ajrccm.160.3.16030

    Article  CAS  Google Scholar 

  15. Kelly J, Rudd A, Lewis R, Parmar K, Moody A, Hunt B (2003) The relationship between acute ischaemic stroke and plasma D-dimer levels in patients developing neither venous thromboembolism nor major intercurrent illness. Blood Coagul Fibrinolysis 14:639–45. https://doi.org/10.1097/00001721-200310000-00004

    Article  PubMed  CAS  Google Scholar 

  16. Righini M, Bounameaux H (2008) Clinical relevance of distal deep vein thrombosis. Curr Opin Pulm Med 14:408–13. https://doi.org/10.1097/MCP.0b013e32830460ea

    Article  PubMed  Google Scholar 

  17. Ji R, Li G, Zhang R, Hou H, Zhao X, Wang Y (2019) Higher risk of deep vein thrombosis after hemorrhagic stroke than after acute ischemic stroke. J Vasc Nurs 37:18–27. https://doi.org/10.1016/j.jvn.2018.10.006

    Article  PubMed  Google Scholar 

  18. Constantinescu-Bercu A, Grassi L, Frontini M, Salles-Crawley I, Woollard K, Crawley J (2020) Activated αβ on platelets mediates flow-dependent NETosis via SLC44A2. eLife 9:e53353. https://doi.org/10.7554/eLife.53353

  19. Dyer M, Chen Q, Haldeman S, Yazdani H, Hoffman R, Loughran P et al (2018) Deep vein thrombosis in mice is regulated by platelet HMGB1 through release of neutrophil-extracellular traps and DNA. Sci Rep 8:2068. https://doi.org/10.1038/s41598-018-20479-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Setiadi H, Yago T, Liu Z, McEver R (2019) Endothelial signaling by neutrophil-released oncostatin M enhances P-selectin-dependent inflammation and thrombosis. Blood Adv. 3:168–83. https://doi.org/10.1182/bloodadvances.2018026294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fuchs T, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers D et al (2010) Extracellular DNA traps promote thrombosis. Proc National Acad Sci US Amer 107:15880–5. https://doi.org/10.1073/pnas.1005743107

    Article  Google Scholar 

  22. Brill A, Fuchs T, Savchenko A, Thomas G, Martinod K, De Meyer S et al (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost: JTH 10:136–44. https://doi.org/10.1111/j.1538-7836.2011.04544.x

    Article  PubMed  CAS  Google Scholar 

  23. Massberg S, Grahl L, von Bruehl M, Manukyan D, Pfeiler S, Goosmann C et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887–96. https://doi.org/10.1038/nm.2184

    Article  PubMed  CAS  Google Scholar 

  24. Hirashima Y, Nakamura S, Endo S, Kuwayama N, Naruse Y, Takaku A (1997) Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage. Neurochem Res 22:1249–55. https://doi.org/10.1023/a:1021985030331

    Article  PubMed  CAS  Google Scholar 

  25. Li D, Yuan M, Yang H (2022) Blood cell parameters combined with inflammatory markers in the early diagnosis of pulmonary embolism. Cell Molec Biol 68:177–85. https://doi.org/10.14715/cmb/2022.68.5.24

    Article  Google Scholar 

  26. Mahemuti A, Abudureheman K, Aihemaiti X, Hu X, Xia Y, Tang B et al (2012) Association of interleukin-6 and C-reactive protein genetic polymorphisms levels with venous thromboembolism. Chin Med J 125:3997–4002

    PubMed  Google Scholar 

  27. Gao Q, Zhang P, Wang W, Ma H, Tong Y, Zhang J et al (2016) The correlation analysis of tumor necrosis factor-alpha-308G/A polymorphism and venous thromboembolism risk: a meta-analysis. Phlebology 31:625–31. https://doi.org/10.1177/0268355515607405

    Article  PubMed  Google Scholar 

  28. Folsom A, Lutsey P, Astor B, Cushman M (2009) C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort. Thromb Haemost 102:615–9. https://doi.org/10.1160/th09-04-0274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Matos M, Lourenço D, Orikaza C, Bajerl J, Noguti M, Morelli V (2011) The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6 -174GC, IL-8 -251AT and MCP-1 -2518AG in the risk of venous thromboembolism: a case-control study. Thromb Res 128:216–20. https://doi.org/10.1016/j.thromres.2011.04.016

    Article  PubMed  CAS  Google Scholar 

  30. Kshettry V, Rosenbaum B, Seicean A, Kelly M, Schiltz N, Weil R (2014) Incidence and risk factors associated with in-hospital venous thromboembolism after aneurysmal subarachnoid hemorrhage. J Clin Neurosci 21:282–6. https://doi.org/10.1016/j.jocn.2013.07.003

    Article  PubMed  Google Scholar 

  31. Blomqvist A, Engblom D (2018) Neural mechanisms of inflammation-induced fever. Neurosci 24:381–99. https://doi.org/10.1177/1073858418760481

    Article  CAS  Google Scholar 

  32. Kuwashiro T, Toyoda K, Oyama N, Kawase K, Okazaki S, Nagano K et al (2012) High plasma D-dimer is a marker of deep vein thrombosis in acute stroke. J Stroke Cerebrovasc Dis 21:205–9. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.06.009

    Article  PubMed  Google Scholar 

  33. Ha S, Kim Y, Heo S, Chang D, Kim B (2020) Prediction of deep vein thrombosis by ultrasonography and D-dimer in Asian patients with ischemic stroke. BMC Neurology 20:257. https://doi.org/10.1186/s12883-020-01842-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Juang L, Hur W, Silva L, Strilchuk A, Francisco B, Leung J et al (2022) Blood 139:1302–11. https://doi.org/10.1182/blood.2021014559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Xue J, Ma D, Jiang J, Liu Y (2021) Diagnostic and prognostic value of immune/inflammation biomarkers for venous thromboembolism: is it reliable for clinical practice? J Inflamm Res 14:5059–77. https://doi.org/10.2147/jir.S327014

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chopard R, Albertsen I, Piazza G (2020) Diagnosis and treatment of lower extremity venous thromboembolism: a review. JAMA 324:1765–76. https://doi.org/10.1001/jama.2020.17272

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of China (81771233, 82171290), Research and Promotion Program of Appropriate Techniques for Intervention of Chinese High-risk Stroke People (GN-2020R0007), BTH Coordinated Development-Beijing Science and Technology Planning Project (Z181100009618035), Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20190501), and Beijing Natural Science Foundation (19L2013; 22G10396).

Author information

Authors and Affiliations

Authors

Contributions

Yongkai Qin, Aihua Liu, Jun Kang, and Zhongxue Wu conceived the study concept. Yongkai Qin, Baorui Zhang, Shangfeng Zhao, and Wei Wang participated in the design of the study. Yongkai Qin, Baorui Zhang, Siyuan Dong, Songfeng Zhao, Yan Miao, Shenkun Tang, and Lang Liu collected data. Siyuan Dong, Shangfeng Zhao, and Wei Wang analyzed and interpreted the data. Yongkai Qin, Baorui Zhang, Jun Kang, and Aihua Liu drafted and edited the manuscript. Aihua Liu, Baorui Zhang, Yongkai Qin, and Jun Kang had full access to all the data in the study and took responsibility for the data and the accuracy of the data analysis. All the authors approved the final manuscript.

Corresponding authors

Correspondence to Jun Kang or Aihua Liu.

Ethics declarations

Ethical approval

Informed consent was obtained for all participants. This study was approved by the centers review board (Beijing Tiantan Hospital, Capital Medical University; Beijing Tongren Hospital, Capital Medical University; The Third Xiangya Hospital, Central South University) and was in accordance with the principles of the Declaration of Helsinki.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Zhang, B., Zhao, S. et al. Association between higher systemic immune inflammation index (SII) and deep vein thrombosis (DVT) in patients with aneurysmal subarachnoid hemorrhage (aSAH) after endovascular treatment. Neurosurg Rev 46, 142 (2023). https://doi.org/10.1007/s10143-023-02048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-023-02048-7

Keywords

Navigation