Skip to main content

Advertisement

Log in

Topical hemostatic agents in neurosurgery, a comprehensive review: 15 years update

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Hemostasis in neurosurgery is of utmost importance. Bleeding management is one of the crucial steps of each neurosurgical procedure. Several strategies, namely thermal, mechanical, electric, and chemical, have been advocated to face blood loss within the surgical field. Over time, countless hemostatic agents and devices have been proposed. Furthermore, the ever-growing recent technological innovation has made available several novel and interesting tools. Pursuant to their impact on surgical practice, we perceived the imperative to update our previous disclosure paper. Therefore, we reviewed the literature and analyzed technical data sheets of each product in order to provide an updated and comprehensive overview in regard to chemical properties, mechanisms of action, use, complications, tricks, and pitfalls of topical hemostatic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Code availability

Not applicable.

References

  1. Schonauer C, Tessitore E, Barbagallo G, Albanese V, Moraci A (2004) The use of local agents: bone wax, gelatin, collagen, oxidized cellulose. Eur Spine J 13(Suppl 1):S89-96. https://doi.org/10.1007/s00586-004-0727-z

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spotnitz WD (2012) Hemostats, sealants, and adhesives: a practical guide for the surgeon. Am Surg 78(12):1305–1321

    Article  Google Scholar 

  3. Tompeck AJ, Gajdhar AUR, Dowling M et al (2020) A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. J Trauma Acute Care Surg 88(1):e1–e21. https://doi.org/10.1097/TA.0000000000002508

    Article  CAS  PubMed  Google Scholar 

  4. Tan TC, Black PM. Sir Victor Horsley ( 2002). (1857–1916): pioneer of neurological surgery. Neurosurgery. 50(3):607–11; discussion 611–2. doi:https://doi.org/10.1097/00006123-200203000-00032

  5. Chu L, Yang JS, Yu KX, Chen CM, Hao DJ, Deng ZL (2018) Usage of bone wax to facilitate percutaneous endoscopic cervical discectomy via anterior transcorporeal approach for cervical intervertebral disc herniation. World Neurosurg 118:102–108. https://doi.org/10.1016/j.wneu.2018.07.070

    Article  PubMed  Google Scholar 

  6. Das JM (2018) Bone wax in neurosurgery: a review. World Neurosurg 116:72–76. https://doi.org/10.1016/j.wneu.2018.04.222

    Article  PubMed  Google Scholar 

  7. Sadigh PL, Clifton A, Toma A (2016) Giant bilateral cavernous-carotid aneurysms complicated by epistaxis. Eur Ann Otorhinolaryngol Head Neck Dis 133(2):129–131. https://doi.org/10.1016/j.anorl.2015.03.003

    Article  PubMed  Google Scholar 

  8. Uppal N, Baliga M (2016) Bone wax to improvise a screw-holder: a makeshift emergency tool. Trop Doct 46(1):67–68. https://doi.org/10.1177/0049475515600367

    Article  PubMed  Google Scholar 

  9. Celtikci P, Celtikci E, Emmez H, Ucar M, Börcek A (2018) Utilization of bone wax as a marker for spatial orientation in intraoperative magnetic resonance imaging. Clin Neuroradiol 28(1):117–121. https://doi.org/10.1007/s00062-017-0595-7

    Article  PubMed  Google Scholar 

  10. Cheng YS, Kozin ED, Remenschneider AK, Nakajima HH, Lee DJ (2016) Characteristics of wax occlusion in the surgical repair of superior canal dehiscence in human temporal bone specimens. Otol Neurotol 37(1):83–88. https://doi.org/10.1097/MAO.0000000000000916

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thangamathesvaran L, Mirani N, Turbin R, Langer PD (2019) Chronic, symptomatic orbital inflammation resulting from retained bone wax. Ophthalmic Plast Reconstr Surg 35(6):e147–e148. https://doi.org/10.1097/IOP.0000000000001471

    Article  PubMed  Google Scholar 

  12. Cirak B, Unal O (2000) Iatrogenic quadriplegia and bone wax. Case illustration J Neurosurg 92(2 Suppl):248. https://doi.org/10.3171/spi.2000.92.2.0248

    Article  CAS  PubMed  Google Scholar 

  13. Maki Y, Ishibashi R, Yamada D, Morita T, Chin M, Yamagata S (2017) Postoperative ptosis and diplopia induced by the intraoperative application of bone wax. World Neurosurg 103:951.e1-951.e3. https://doi.org/10.1016/j.wneu.2017.03.102

    Article  Google Scholar 

  14. Kamide T, Nakada M, Hirota Y, Hayashi Y, Uchiyama N, Hamada J (2009) Skull osteohypertrophy as a complication of bone wax. J Clin Neurosci 16(12):1658–1660. https://doi.org/10.1016/j.jocn.2009.03.014

    Article  PubMed  Google Scholar 

  15. Zhou Y, Li M, Wei X, Yang X, Zhang J, Qi X (2019) Bone wax migrates to the orbit in a patient with a frontal sinus abnormality: a case report. BMC Ophthalmol 19(1):29. https://doi.org/10.1186/s12886-019-1037-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fahradyan A, Ohanisian L, Tsuha M, Park MJ, Hammoudeh JA (2018) An unusual complication of bone wax utilization. J Craniofac Surg 29(4):976–979. https://doi.org/10.1097/SCS.0000000000004321

    Article  PubMed  Google Scholar 

  17. Brückner T, Schamel M, Kübler AC, Groll J, Gbureck U (2016) Novel bone wax based on poly(ethylene glycol)-calcium phosphate cement mixtures. Acta Biomater 33:252–263. https://doi.org/10.1016/j.actbio.2016.01.021

    Article  CAS  PubMed  Google Scholar 

  18. Tham T, Roberts K, Shanahan J, Burban J, Costantino P (2018) Analysis of bone healing with a novel bone wax substitute compared with bone wax in a porcine bone defect model. Future Sci OA. 4(8):FSO326. https://doi.org/10.4155/fsoa-2018-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cao W, Peng Y, Zhang Y et al (2018) Novel bone wax based on tricalcium silicate cement and BGs mixtures. Biomed Mater 13(6):065001. https://doi.org/10.1088/1748-605X/aad73c

    Article  PubMed  Google Scholar 

  20. Chen C, Li H, Pan J et al (2015) Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnol Lett 37(2):457–465. https://doi.org/10.1007/s10529-014-1697-9

    Article  CAS  PubMed  Google Scholar 

  21. Magyar CE, Aghaloo TL, Atti E, Tetradis S ( 2008) Ostene, a new alkylene oxide copolymer bone hemostatic material, does not inhibit bone healing. Neurosurgery.63(4 Suppl 2):373–8; discussion 378. https://doi.org/10.1227/01.NEU.0000316859.03788.44

  22. Bilge A, Ulusoy RG, Ozturk O, Ozturk IA, Aykut S (2017) Carpal tunnel syndrome surgery anti-adhesion gel is effective? Acta Chir Orthop Traumatol Cech 84(5):391–395

    CAS  PubMed  Google Scholar 

  23. Pereira BM, Bortoto JB, Fraga GP (2018) Topical hemostatic agents in surgery: review and prospects. Rev Col Bras Cir 45(5):e1900. https://doi.org/10.1590/0100-6991e-20181900

    Article  PubMed  Google Scholar 

  24. Tessitore E, Schatlo B, Schaller C, Schonauer C (2012) Fibrillary structure is key for hemostasis: a similar effect of collagen fleece and oxidized cellulose on experimental hemorrhagic brain injury. J Neurol Surg A Cent Eur Neurosurg 73(2):89–92. https://doi.org/10.1055/s-0032-1309064

    Article  CAS  PubMed  Google Scholar 

  25. Prabhu S (2019) Bespoke GelFoam Wafers: A practical and inexpensive alternative to oxycel for hemostasis during neurosurgery. Asian J Neurosurg. 14(2):483–486. https://doi.org/10.4103/ajns.AJNS_275_18

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lei Xia, Ming-Xing Liu, Jun Zhong, Dou N-N (2017) The value of Gelfoam in prevention of recurrence following microvascular decompression

  27. Chang B, Tang Y, Wei X, Li S (2021) A new application of gelatin sponge in the treatment of hemifacial spasm by microvascular decompression: a technical note. J Neurol Surg A Cent Eur Neurosurg. https://doi.org/10.1055/s-0040-1720994

    Article  PubMed  Google Scholar 

  28. Bai RY, Staedtke V, Xia X, Riggins GJ (2017) Prevention of tumor seeding during needle biopsy by chemotherapeutic-releasing gelatin sticks. Oncotarget 8(16):25955–25962. https://doi.org/10.18632/oncotarget.15427

    Article  PubMed  PubMed Central  Google Scholar 

  29. Brundage CM, Packer RA, Jones MD (2016) Magnetic resonance imaging appearance and mechanism of action of five hemostatic agents used in neurosurgery. Vet Surg 45(8):996–1004. https://doi.org/10.1111/vsu.12551

    Article  PubMed  Google Scholar 

  30. Yang JC, Kim TW, Park KH (2013) Gelfoam-induced swallowing difficulty after anterior cervical spine surgery. Korean J Spine 10(2):94–96. https://doi.org/10.14245/kjs.2013.10.2.94

    Article  PubMed  PubMed Central  Google Scholar 

  31. Achneck HE, Sileshi B, Jamiolkowski RM, Albala DM, Shapiro ML, Lawson JH (2010) A comprehensive review of topical hemostatic agents: efficacy and recommendations for use. Ann Surg 251(2):217–228. https://doi.org/10.1097/SLA.0b013e3181c3bcca

    Article  PubMed  Google Scholar 

  32. Ktari O, Frassanito P, Gessi M, Bianchi F, Tamburrini G, Massimi L (2020) Gelfoam Migration: A potential cause of recurrent hydrocephalus. World Neurosurg 10(142):212–217. https://doi.org/10.1016/j.wneu.2020.06.214

    Article  Google Scholar 

  33. Palm MD, Altman JS (2008) Topical hemostatic agents: a review. Dermatol Surg 34(4):431–445. https://doi.org/10.1111/j.1524-4725.2007.34090.x

    Article  CAS  PubMed  Google Scholar 

  34. Gabay M, Boucher BA (2013) An essential primer for understanding the role of topical hemostats, surgical sealants, and adhesives for maintaining hemostasis. Pharmacotherapy 33(9):935–955. https://doi.org/10.1002/phar.1291

    Article  PubMed  Google Scholar 

  35. Spangler D, Rothenburger S, Nguyen K, Jampani H, Weiss S, Bhende S (2003) In vitro antimicrobial activity of oxidized regenerated cellulose against antibiotic-resistant microorganisms. Surg Infect (Larchmt) 4(3):255–262. https://doi.org/10.1089/109629603322419599

    Article  Google Scholar 

  36. Spotnitz WD, Burks S (2010) State-of-the-art review: hemostats, sealants, and adhesives II: update as well as how and when to use the components of the surgical toolbox. Clin Appl Thromb Hemost 16(5):497–514. https://doi.org/10.1177/1076029610363589

    Article  CAS  PubMed  Google Scholar 

  37. Keshavarzi S, MacDougall M, Lulic D, Kasasbeh A, Levy M (2013) Clinical experience with the surgicel family of absorbable hemostats (oxidized regenerated cellulose) in neurosurgical applications: a review. Wounds 25(6):160–167

    PubMed  Google Scholar 

  38. Dias GJ, Peplow PV, Teixeira F (2003) Osseous regeneration in the presence of oxidized cellulose and collagen. J Mater Sci Mater Med 14(9):739–745. https://doi.org/10.1023/a:1025076002948

    Article  CAS  PubMed  Google Scholar 

  39. Boeris D, Evins AI, Lanotte MM, Zeme S, Ducati A (2014) Pontine compression caused by “surgiceloma” after trigeminal decompression: case report and literature review. Acta Neurol Belg 114(3):229–231. https://doi.org/10.1007/s13760-013-0203-9

    Article  PubMed  Google Scholar 

  40. Oz MC, Cosgrove DM, Badduke BR et al (2000) Controlled clinical trial of a novel hemostatic agent in cardiac surgery. The Fusion Matrix Study Group. Ann Thorac Surg. 69(5):1376–82. https://doi.org/10.1016/s0003-4975(00)01194-2

    Article  CAS  PubMed  Google Scholar 

  41. Howe N, Cherpelis B (2013) Obtaining rapid and effective hemostasis: Part I. Update and review of topical hemostatic agents. J Am Acad Dermatol. 69(5):659.e1-659.e17. https://doi.org/10.1016/j.jaad.2013.07.014

    Article  Google Scholar 

  42. Wilartratsami S, Sanansilp V, Ariyawatkul T et al (2014) The effect of epidural low-dose morphine-soaked microfibrillar collagen sponge in postoperative pain control after laminectomy and instrumented fusion: a randomized double-blind placebo-controlled study. J Med Assoc Thai 97(Suppl 9):S62–S67

    PubMed  Google Scholar 

  43. Fujimoto Y, Kobayashi T, Komori M et al (2014) Modified hemostatic technique using microfibrillar collagen hemostat in endoscopic endonasal transsphenoidal surgery: technical note. Neurol Med Chir (Tokyo) 54(8):617–621. https://doi.org/10.2176/nmc.tn.2014-0024

    Article  Google Scholar 

  44. Kim EH, Ahn JY, Chang JH, Kim SH (2009) Management strategies of intercavernous sinus bleeding during transsphenoidal surgery. Acta Neurochir (Wien) 151(7):803–808. https://doi.org/10.1007/s00701-009-0356-8

    Article  Google Scholar 

  45. Renati S, Kaur S, Kresak JL, Wicklund M, Malaty I (2017) Granulomatous meningitis secondary to Avitene (microfibrillar collagen). Neurol Clin Pract 7(5):384–386. https://doi.org/10.1212/CPJ.0000000000000305

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tschan CA, Nie M, Schwandt E, Oertel J (2011) Safety and efficacy of microporous polysaccharide hemospheres in neurosurgery. Neurosurgery. 69(1 Suppl Operative):ons49–63. doi:https://doi.org/10.1227/NEU.0b013e3182155a52

  47. “Vitasure Features & Benefits.” Stryker Soft Tissue, www.stryker.com/en-us/products/Orthobiologicals/SoftTissue/Vitasure?index.htm.

  48. Polysaccharide PPHS, System H, [package insert], (2017) San Jose. Starch Medical Inc, CA

    Google Scholar 

  49. Ereth MH, Schaff M, Ericson EF, Wetjen NM, Nuttall GA, Oliver WC (2008) Comparative safety and efficacy of topical hemostatic agents in a rat neurosurgical model. Neurosurgery. 63(4 Suppl 2):369–72; discussion 372. doi:https://doi.org/10.1227/01.NEU.0000327031.98098.DD

  50. Lawson JH (2006) The clinical use and immunologic impact of thrombin in surgery. Semin Thromb Hemost 32(Suppl 1):98–110. https://doi.org/10.1055/s-2006-939559

    Article  CAS  PubMed  Google Scholar 

  51. THROMBIN-JMI - thrombin, topical (bovine)THROMBIN-JMI; THROMBIN-JMI Pump spray kit; THROMBIN-JMI Syringe spray kit

  52. Highlights of prescribing information - EVITHROM* Thrombin, Topical (Human) For Topical Use Only Initial U.S approval (2007)

  53. Lew WK, Weaver FA (2008) Clinical use of topical thrombin as a surgical hemostat. Biologics 2(4):593–599. https://doi.org/10.2147/btt.s2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chapman WC, Lockstadt H, Singla N, Kafie FE, Lawson JH (2006) Phase 2, randomized, double-blind, placebo-controlled, multicenter clinical evaluation of recombinant human thrombin in multiple surgical indications. J Thromb Haemost 4(9):2083–2085. https://doi.org/10.1111/j.1538-7836.2006.02067.x

    Article  CAS  PubMed  Google Scholar 

  55. Slezak P, Keibl C, Labahn D, Schmidbauer A, Genyk Y, Gulle H (2020) A comparative efficacy evaluation of recombinant topical thrombin (RECOTHROM). J Invest Surg. 1–7. https://doi.org/10.1080/08941939.2019.1705444

  56. Chiara O, Cimbanassi S, Bellanova G et al (2018) A systematic review on the use of topical hemostats in trauma and emergency surgery. BMC Surg 18(1):68. https://doi.org/10.1186/s12893-018-0398-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. SURGIFLO® stops bleeding before FloSeal is ready to use

  58. Wolkow N, Jakobiec FA, Yoon MK (2018) Gelatin-based hemostatic agents: histopathologic differences. Ophthalmic Plast Reconstr Surg. 34(5):452–455. https://doi.org/10.1097/IOP.0000000000001048

    Article  PubMed  Google Scholar 

  59. Altun I (2016) An experimental study of histopathologic effects of hemostatic agents used in spinal surgery. World Neurosurg 90:147–153. https://doi.org/10.1016/j.wneu.2016.02.052

    Article  PubMed  Google Scholar 

  60. Ramirez MG, Deutsch H, Khanna N, Cheatem D, Yang D, Kuntze E (2018) FloSeal only versus in combination in spine surgery: a comparative, retrospective hospital database evaluation of clinical and healthcare resource outcomes. Hosp Pract (1995) 46(4):189–196. https://doi.org/10.1080/21548331.2018.1498279

    Article  Google Scholar 

  61. Ma L, Dai L, Yang Y, Liu H (2018) Comparison the efficacy of hemorrhage control of Surgiflo Haemostatic Matrix and absorbable gelatin sponge in posterior lumbar surgery: a randomized controlled study. Medicine (Baltimore) 97(49):e13511. https://doi.org/10.1097/MD.0000000000013511

    Article  Google Scholar 

  62. Parker J, Soltani S, Boissiere L, Obeid I, Gille O, Kieser DC (2019) Spinal aneurysmal bone cysts (ABCs): optimal management. Orthop Res Rev 11:159–166. https://doi.org/10.2147/ORR.S211834

    Article  PubMed  PubMed Central  Google Scholar 

  63. Luh HT, Huang AP, Yang SH et al (2018) Local hemostatic matrix for endoscope-assisted removal of intracerebral hemorrhage is safe and effective. J Formos Med Assoc 117(1):63–70. https://doi.org/10.1016/j.jfma.2017.02.016

    Article  PubMed  Google Scholar 

  64. Kamamoto D, Kanazawa T, Ishihara E et al (2020) Efficacy of a topical gelatin-thrombin hemostatic matrix. FloSeal Surg Neurol Int 11:16. https://doi.org/10.25259/SNI_272_2019

    Article  PubMed  Google Scholar 

  65. Cappabianca P, Esposito F, Esposito I, Cavallo LM, Leone CA (2009) Use of a thrombin-gelatin haemostatic matrix in endoscopic endonasal extended approaches: technical note. Acta Neurochir (Wien). 151(1):69–77; discussion 77. https://doi.org/10.1007/s00701-008-0172-6

  66. Killory BD, Kilbourn KJ, Ollenschleger M (2015) A novel use of direct platelet application during surgery for clopidogrel-associated intracerebral hemorrhage. World Neurosurg 84(6):2078.e1–4. https://doi.org/10.1016/j.wneu.2015.08.016

    Article  Google Scholar 

  67. Landi A, Gregori F, Marotta N, Delfini R (2016) Efficacy, security, and manageability of gelified hemostatic matrix in bleeding control during thoracic and lumbar spine surgery: FloSeal versus Surgiflo. J Neurol Surg A Cent Eur Neurosurg 77(2):139–143. https://doi.org/10.1055/s-0035-1558413

    Article  PubMed  Google Scholar 

  68. Price JS, Tackett S, Patel V (2015) Observational evaluation of outcomes and resource utilization from hemostatic matrices in spine surgery. J Med Econ 18(10):777–786. https://doi.org/10.3111/13696998.2015.1046879

    Article  PubMed  Google Scholar 

  69. Makhija D, Rock M, Xiong Y et al (2017) Cost-consequence analysis of different active flowable hemostatic matrices in cardiac surgical procedures. J Med Econ 20(6):565–573. https://doi.org/10.1080/13696998.2017.1284079

    Article  CAS  PubMed  Google Scholar 

  70. Esposito F, Cappabianca P, Angileri FF et al (2020) Gelatin-thrombin hemostatic matrix in neurosurgical procedures: hemostatic effectiveness and economic value of clinical and surgical procedure-related benefits. J Neurosurg Sci 64(2):158–164. https://doi.org/10.23736/S0390-5616.16.03771-1

    Article  PubMed  Google Scholar 

  71. David G, Lim S, Gunnarsson C, Kocharian R, Roy S (2015) Similar patient outcomes yet different hospital costs between flowable hemostatic agents. J Med Econ 18(9):735–745. https://doi.org/10.3111/13696998.2015.1044994

    Article  PubMed  Google Scholar 

  72. White RZ, Kerr L, White TJ, Sampson MJ (2021) Review of topical gelatin-based haemostatic agents; an insidious culprit of intraoperative anaphylaxis? ANZ J Surg. https://doi.org/10.1111/ans.16716

    Article  PubMed  Google Scholar 

  73. Jain R, Wairkar S (2019) Recent developments and clinical applications of surgical glues: an overview. Int J Biol Macromol 137:95–106. https://doi.org/10.1016/j.ijbiomac.2019.06.208

    Article  CAS  PubMed  Google Scholar 

  74. Qiu L, Qi See AA, Steele TWJ, Kam King NK (2019) Bioadhesives in neurosurgery: a review. J Neurosurg. 1–11. https://doi.org/10.3171/2019.8.JNS191592

  75. Cavallo LM, Solari D, Somma T, Cappabianca P (2019) The 3F (Fat, Flap, and Flash) Technique for skull base reconstruction after endoscopic endonasal suprasellar approach. World Neurosurg 126:439–446. https://doi.org/10.1016/j.wneu.2019.03.125

    Article  PubMed  Google Scholar 

  76. Cavallo LM, Solari D, Somma T, Savic D, Cappabianca P (2014) The awake endoscope-guided sealant technique with fibrin glue in the treatment of postoperative cerebrospinal fluid leak after extended transsphenoidal surgery: technical note. World Neurosurg. 82(3–4):e479-85. https://doi.org/10.1016/j.wneu.2013.01.017

    Article  PubMed  Google Scholar 

  77. Montano N, Pignotti F, Auricchio AM, Fernandez E, Olivi A, Papacci F (2019) Results of TachoSil® associated with fibrin glue as dural sealant in a series of patients with spinal intradural tumors surgery. Technical note with a review of the literature. J Clin Neurosci. 61:88–92. https://doi.org/10.1016/j.jocn.2018.10.138

    Article  CAS  PubMed  Google Scholar 

  78. Otani N, Toyooka T, Fujii K et al (2018) “Birdlime” technique using TachoSil tissue sealing sheet soaked with fibrin glue for sutureless vessel transposition in microvascular decompression: operative technique and nuances. J Neurosurg. 128(5):1522–1529. https://doi.org/10.3171/2017.1.JNS161243

    Article  PubMed  Google Scholar 

  79. Jiménez Zapata HD, Rodríguez Berrocal V, Vior Fernández C, Sánchez FM, García FA (2020) Sellar diaphragm reconstruction with TachoSil during endoscopic endonasal surgery: technical note. J Neurol Surg B Skull Base 81(3):275–279. https://doi.org/10.1055/s-0039-1688781

    Article  PubMed  Google Scholar 

  80. Mertz PM, Davis SC, Cazzaniga AL, Drosou A, Eaglstein WH (2003) Barrier and antibacterial properties of 2-octyl cyanoacrylate-derived wound treatment films. J Cutan Med Surg. 7(1):1–6. https://doi.org/10.1007/s10227-002-1154-6

    Article  PubMed  Google Scholar 

  81. Howard TC, Kelley RR (1969) The effect of bone wax on the healing of experimental rat tibial lesions. Clin Orthop Relat Res 63:226–232

    CAS  PubMed  Google Scholar 

  82. Alegre M, Garcés JR, Puig L (2013) Bone wax in dermatologic surgery. Actas Dermosifiliogr 104(4):299–303. https://doi.org/10.1016/j.adengl.2013.03.001English,Spanish

    Article  CAS  PubMed  Google Scholar 

  83. Alberius P, Klinge B, Sjögren S (1987) Effects of bone wax on rabbit cranial bone lesions. J Craniomaxillofac Surg 15(2):63–67

    Article  CAS  Google Scholar 

  84. Kunduz E, Aysan E, İdiz UO, Ersoy YE, Bektaşoğlu HK, Yığman S, Kundakcıoğlu H (2019) Evaluation of local hemostatic effect of microporous polysaccharide hemospheres products in thyroid surgery: a prospective randomized controlled study. Turk J Surg 35(1):49–53. https://doi.org/10.5578/turkjsurg.4162

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qian G, Dong Y, Yang W, Wang M (2012) Injectable calcium phosphate cement and fibrin sealant recombined human bone morphogenetic protein-2 composite in vertebroplasty: an animal study. Bosn J Basic Med Sci 12(4):231–235

    Article  CAS  Google Scholar 

  86. Mizuno K, Ikeda T, Ikoma K et al (2014) Evaluation of resorption and biocompatibility of collagen hemostats in the spinal epidural space. Spine J 14(9):2141–2149

    Article  Google Scholar 

  87. Nooh N, Abdullah WA, Ml-A Grawish, Ramalingam S, Javed F, Al-Hezaimi K (2014) The effects of surgicel and bone wax hemostatic agents on bone healing: an experimental study. Indian J Orthop. 48(3):319–325

    Article  Google Scholar 

  88. Yoon HS, Na YC, Choi KH, Huh WH, Kim JM (2019) Wound healing effect of regenerated oxidized cellulose versus fibrin sealant patch: an in vivo study. Arch Craniofac Surg 20(5):289–296

    Article  CAS  Google Scholar 

  89. MacDonald MH, Tasse L, Wang D, Zhang G, De Leon H, Kocharian R (2020) Evaluation of the hemostatic efficacy of two powdered topical absorbable hemostats using a porcine liver abrasion model of mild to moderate bleeding. J Invest Surg 1–9.

  90. Bruner JP, Tulipan NE, Richards WO (1997) Endoscopic coverage of fetal open myelomeningocele in utero. Am J Obstet Gynecol 176(1 Pt 1):256–257

    Article  CAS  Google Scholar 

  91. Schenk WG, Burks SG, Gagne PJ, Kagan SA, Lawson JH, Spotnitz WD (2003) Fibrin sealant improves hemostasis in peripheral vascular surgery: a randomized prospective trial. Ann Surg. 237(6):871–876; discussion 876.

  92. Cappabianca P, Cavallo LM, Valente V, et al (2004) Sellar repair with fibrin sealant and collagen fleece after endoscopic endonasal transsphenoidal surgery. Surg Neurol 62(3):227–233; discussion 233.

  93. Qerimi B, Baumann P, Hüsing J, Knaebel HP, Schumacher H (2013) Collagen hemostat significantly reduces time to hemostasis compared with cellulose: COBBANA, a single-center, randomized trial. Am J Surg 205(6):636–641

    Article  Google Scholar 

  94. Hsieh YH, Yang KC, Liu WC, Kao CC, Chen LW, Lin CT (2019) The safety and benefit of using oxidized regenerated cellulose to position free flap pedicle in head and neck reconstruction. Microsurgery 39(6):521–527. https://doi.org/10.1002/micr.30475

    Article  PubMed  Google Scholar 

  95. Jolly K, Gupta KK, Egbuji O, Naik PP, Ahmed SK (2021) Endoscopic transsphenoidal surgery reconstruction using the fibrin sealant patch Tachosil. Br J Neurosurg. 1–10.

  96. Gocoł R, Bis J, Hudziak D, Morkisz Ł, Deja MA (2021) Aortic root reconstruction with TachoSil fibrin sealant patch in acute type A aortic fissection. Ann Thorac Cardiovasc Surg. https://doi.org/10.5761/atcs.nm.20-00198

    Article  PubMed  PubMed Central  Google Scholar 

  97. Finn MD, Schow SR, Schneiderman ED (1992) Osseous regeneration in the presence of four common hemostatic agents. J Oral Maxillofac Surg 50(6):608–612

    Article  CAS  Google Scholar 

  98. Armstrong JK, Han B, Kuwahara K et al (2010) The effect of three hemostatic agents on early bone healing in an animal model. BMC Surg 10:37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

1. Claudio Schonauer.

Research project: Conception, Organization, and Execution; Manuscript: Writing of the first draft, Review and Critique.

2. Ciro Mastantuoni

Research project: Conception, Organization, and Execution; Manuscript: Writing of the first draft, Review and Critique.

3. Teresa Somma

Manuscript: Review and Critique.

4. Raffaele de Falco

Manuscript: Review and Critique.

5. Paolo Cappabianca

Manuscript: Review and Critique.

6. Enrico Tessitore

Research project: Conception, Organization, and Execution; Manuscript: Review and Critique.

Corresponding author

Correspondence to C. Mastantuoni.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schonauer, C., Mastantuoni, C., Somma, T. et al. Topical hemostatic agents in neurosurgery, a comprehensive review: 15 years update. Neurosurg Rev 45, 1217–1232 (2022). https://doi.org/10.1007/s10143-021-01684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01684-1

Keywords

Navigation