Skip to main content

Advertisement

Log in

Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The connection between gastrointestinal microbiota and the brain has been described in ancient medical texts and is now well established by research. It is a bidirectional communication which plays a critical role in regulating not only the gastrointestinal homeostasis but has also been linked to higher emotional and cognitive functions. Recent studies have sought to expand on this concept by providing concrete evidence of the influence of gut microbiome on a wide array of diseases and disorders of the central nervous system. This article reviews the most recent literature published on this subject, over the previous decade and aims to establish the role of a healthy gut microbiome and probiotics as an effective adjunct in health and management of diseases of the nervous system. A literature search on PubMed database was conducted using keywords including “gut brain-axis,” “gut dysbiosis,” “neuropsychiatric disorders,” “neurodegenerative disorders,” “probiotic,” and “traumatic brain injury.” The search was performed without any publication date restrictions. Both animal and human studies evaluating the role of gut dysbiosis on various neurological and neurosurgical diseases, published in peer-reviewed journals, were reviewed. Current studies do not provide conclusive evidence of a direct origin of CNS disorders from gut dysbiosis, but a possible modulatory role of gut microbiota in certain neurological disorders has been implicated. An understanding of this connection can aid in finding novel therapeutic strategies for the management of neurological disorders associated with memory dysfunctions and brain and spinal cord injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable for this literature review.

References

  1. Ahmed SA, Elhefnawy AM, Azouz HG, Roshdy YS, Ashry MH, Ibrahim AE et al (2020) Study of the gut microbiome profile in children with autism spectrum disorder: a single tertiary hospital experience. J Mol Neurosci 70(6):887–896. https://doi.org/10.1007/s12031-020-01500-3

    Article  CAS  PubMed  Google Scholar 

  2. Aho VTE, Pereira PAB, Voutilainen S, Paulin L, Pekkonen E, Auvinen P, Scheperjans F (2019) Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44:691–707. https://doi.org/10.1016/j.ebiom.2019.05.064

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, Hamidi GA, Salami M (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256. https://doi.org/10.3389/fnagi.2016.00256

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816

    Article  CAS  PubMed  Google Scholar 

  5. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδT cells. Nat Med 22(5):516–523. https://doi.org/10.1038/nm.4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Braakman HMH, van Ingen J (2018) Can epilepsy be treated by antibiotics? J Neurol 265(8):1934–6. https://doi.org/10.1007/s00415-018-8943-3

  7. Brenner D, Hiergeist A, Adis C, Mayer B, Gessner A, Ludolph AC, Weishaupt JH (2018) The fecal microbiome of ALS patients. Neurobiol Aging 61:132–137. https://doi.org/10.1016/j.neurobiolaging.2017.09.023

    Article  PubMed  Google Scholar 

  8. Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G et al (2009) The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J 420(2):211–219. https://doi.org/10.1042/BJ20082222

    Article  CAS  PubMed  Google Scholar 

  9. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, Ferrari C, Guerra UP, Paghera B, Muscio C, Bianchetti A, Volta GD, Turla M, Cotelli MS, Gennuso M, Prelle A, Zanetti O, Lussignoli G, Mirabile D, Bellandi D, Gentile S, Belotti G, Villani D, Harach T, Bolmont T, Padovani A, Boccardi M, Frisoni GB, INDIA-FBP Group (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68. https://doi.org/10.1016/j.neurobiolaging.2016.08.019

    Article  CAS  PubMed  Google Scholar 

  10. Cirstea MS, Yu AC, Golz E, Sundvick K, Kliger D, Radisavljevic N, Foulger LH, Mackenzie M, Huan T, Finlay BB, Appel-Cresswell S (2020) Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov Disord 35:1208–1217. https://doi.org/10.1002/mds.28052

    Article  CAS  PubMed  Google Scholar 

  11. Conlon MA, Bird AR (2014) The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7(1):17–44. https://doi.org/10.3390/nu7010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Coretti L, Paparo L, Riccio MP, Amato F, Cuomo M, Natale A, Borrelli L, Corrado G, de Caro C, Comegna M, Buommino E, Castaldo G, Bravaccio C, Chiariotti L, Berni Canani R, Lembo F (2018) Gut microbiota features in young children with autism spectrum disorders. Front Microbiol 9:3146. https://doi.org/10.3389/fmicb.2018.03146

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dehhaghi M, Panahi HKS (2019) Guillemin GJ (2019) Microorganisms, tryptophan metabolism, and kynurenine pathway: a complex interconnected loop influencing human health status. Int J Tryptophan Res 12:1178646919852996. https://doi.org/10.1177/1178646919852996

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W et al (2015) Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nat Commun 6:7735

    Article  PubMed  Google Scholar 

  15. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, Neunlist M, Derkinderen P (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  16. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720e6

    Article  Google Scholar 

  17. Doulberis M, Kotronis G, Thomann R, Polyzos SA, Boziki M, Gialamprinou D, Deretzi G, Katsinelos P, Kountouras J (2018) Impact of Helicobacter pylori on Alzheimer’s disease: what do we know so far? Helicobacter 23(1). https://doi.org/10.1111/hel.12454

  18. Evrensel A, Ünsalver BO, Ceylan ME. (2019) Psychobiotics In: Kim YK (ed) Frontier’s in psychiatry. Advances in experimental medicine and biology Vol. 1192. Springer Nature Singapore, Singapore, pp 565–581. doi: https://doi.org/10.1007/978-981-32-9721-0

  19. Fang X, Wang X, Yang S, Meng F, Wang X, Wei H et al (2016) Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol 7:1479. https://doi.org/10.3389/fmicb.2016.01479

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fani L, Wolters FJ, Ikram MK, Bruno MJ, Hofman A, Koudstaal PJ, Darwish Murad S, Ikram MA (2018) Helicobacter pylori and the risk of dementia: a population-based study. Alzheimers Dement 14:1377–1382

    Article  PubMed  Google Scholar 

  21. Figueroa-Romero C, Guo K, Murdock BJ, Paez-Colasante X, Bassis CM, Mikhail KA, Raue KD, Evans MC, Taubman GF, McDermott AJ, O'Brien PD, Savelieff MG, Hur J, Feldman EL (2019) Temporal evolution of the microbiome, immune system, and epigenome with disease progression in ALS mice. Dis Model Mech 13(2):dmm041947. https://doi.org/10.1242/dmm.041947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13(12):e1006654. https://doi.org/10.1371/journal.ppat.1006654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghoshal UC (2018) Gut microbiota-brain axis modulation by a healthier microbiological microenvironment: facts and fictions. J Neurogastroenterol Motil 24(1):4–6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502

    Article  PubMed  Google Scholar 

  25. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    Article  CAS  PubMed  Google Scholar 

  26. Gómez-Eguílaz M, Ramón-Trapero JL, Pérez-Martínez L, Blanco JR (2018) The beneficial effect of probiotics as a supplementary treatment in drug-resistant epilepsy: a pilot study. Benef Microbes 9(6):875–881. https://doi.org/10.3920/BM2018.0018

    Article  PubMed  Google Scholar 

  27. Gosalbes MJ, Llop S, Vallès Y, Moya A, Ballester F, Francino MP (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43:198–211. https://doi.org/10.1111/cea.12063

    Article  CAS  PubMed  Google Scholar 

  28. Goyal MS, Venkatesh S, Milbrandt J, Gordon JI, Raichle ME (2015) Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc Natl Acad Sci USA 112(46):14105–14112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M (2016) Intestinal microbiota in patients with spinal cord injury. PLoS One 11(1):e0145878. https://doi.org/10.1371/journal.pone.0145878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haigh E (1975) Bulletin of the history of medicine. Spring 49(1):72–86

    CAS  Google Scholar 

  31. Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, Shibata A, Fujisawa Y, Minato T, Okamoto A, Ohno K, Hirayama M (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One 10(11):e0142164. https://doi.org/10.1371/journal.pone.0142164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. He Z, Cui B-T, Zhang T, Li P, Long C-Y, Ji G-Z, Zhang FM (2017) Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol 23(19):3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  34. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR MR et al (2017) Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ho LKH, Tong VJW, Syn N, Nagarajan N, Tham EH, Tay SK, Shorey S, Tambyah PA, Law ECN (2020) Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathog 12:6. https://doi.org/10.1186/s13099-020-0346-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG, Deuschl G, Baines JF, Kuhlenbäumer G (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45. https://doi.org/10.1016/j.brainres.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  37. Houlden A, Goldrick M, Brough D, Vizi ES, Lénárt N, Martinecz B, Roberts IS, Denes A (2016) Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav Immun 57:10–20. https://doi.org/10.1016/j.bbi.2016.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ji W, Zhu Y, Kan P, Cai Y, Wang Z, Wu Z, Yang P (2017) Analysis of intestinal microbial communities of cerebral infarction and ischemia patients based on high throughput sequencing technology and glucose and lipid metabolism. Mol Med Rep 16(4):5413–5417. https://doi.org/10.3892/mmr.2017.7227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, Mutlu E, Shannon KM (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  PubMed  Google Scholar 

  41. Kigerl KA, Hall JC, Wang L, Mo X, Yu Z, Popovich PG (2016) Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 213(12):2603–2620. https://doi.org/10.1084/jem.20151345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kong X, Liu J, Cetinbas M, Sadreyev R, Koh M, Huang H, Adeseye A, He P, Zhu J, Russell H, Hobbie C, Liu K, Onderdonk AB (2019) New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers. Nutrients 11(9):2128. https://doi.org/10.3390/nu11092128

    Article  CAS  PubMed Central  Google Scholar 

  43. Kossoff EH, Zupec-Kania BA, Auvin S, Ballaban-Gil KR, Christina Bergqvist AG, Blackford R, Buchhalter JR, Caraballo RH, Cross JH, Dahlin MG, Donner EJ, Guzel O, Jehle RS, Klepper J, Kang HC, Lambrechts DA, Liu YMC, Nathan JK, Nordli DR Jr, Pfeifer HH, Rho JM, Scheffer IE, Sharma S, Stafstrom CE, Thiele EA, Turner Z, Vaccarezza MM, van der Louw EJTM, Veggiotti P, Wheless JW, Wirrell EC, The Charlie Foundation, Matthew's Friends, the Practice Committee of the Child Neurology Society (2018) Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the international ketogenic diet study group. Epilepsia Open 3(2):175–192. https://doi.org/10.1002/epi4.12225

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kountouras J, Boziki M, Gavalas E, Zavos C, Deretzi G, Grigoriadis N, Tsolaki M, Chatzopoulos D, Katsinelos P, Tzilves D, Zabouri A, Michailidou I (2009) Increased cerebrospinal fluid Helicobacter pylori antibody in Alzheimer’s disease. Int J Neurosci 119:765–777

    Article  CAS  PubMed  Google Scholar 

  45. Kountouras J, Tsolaki M, Gavalas E, Boziki M, Zavos C, Karatzoglou P, Chatzopoulos D, Venizelos I (2006) Relationship between Helicobacter pylori infection and Alzheimer disease. Neurology 66:938–940

    Article  CAS  PubMed  Google Scholar 

  46. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546. https://doi.org/10.1038/nature12506

    Article  CAS  PubMed  Google Scholar 

  47. Li H, Sun J, Du J, Wang F, Fang R, Yu C et al (2018) Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil 30(5):e13260. https://doi.org/10.1111/nmo.13260

    Article  CAS  PubMed  Google Scholar 

  48. Li N, Wang X, Sun C, Wu X, Lu M, Si Y, Ye X, Wang T, Yu X, Zhao X, Wei N, Wang X (2019) Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol 19(1):191. https://doi.org/10.1186/s12866-019-1552-1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin A, Zheng W, He Y, Tang W, Wei X, He R, Huang W, Su Y, Huang Y, Zhou H, Xie H (2018) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88. https://doi.org/10.1016/j.parkreldis.2018.05.007

    Article  PubMed  Google Scholar 

  50. Lin CH, Chen CC, Chiang HL, Liou JM, Chang CM, Lu TP, Chuang EY, Tai YC, Cheng C, Lin HY, Wu MS (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16(1):129. https://doi.org/10.1186/s12974-019-1528-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin JC, Lin CS, Hsu CW, Lin CL, Kao CH (2016) Association between Parkinson’s disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 22:1049–1055. https://doi.org/10.1097/MIB.0000000000000735

    Article  PubMed  Google Scholar 

  52. Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterström CK, Allander T, Andersson B, Borenstein E, Dahlin M, Prast-Nielsen S (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 5:5. https://doi.org/10.1038/s41522-018-0073-2

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, Zhang L, Jia L, Yue S, Zhou K, Li L, Luo B, Wang B (2019) Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 80:633–643. https://doi.org/10.1016/j.bbi.2019.05.008

    Article  PubMed  Google Scholar 

  54. Liu S, Li E, Sun Z, Fu D, Duan G, Jiang M, Yu Y, Mei L, Yang P, Tang Y, Zheng P (2019) Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci Rep 9(1):287. https://doi.org/10.1038/s41598-018-36430-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Kong C, Gong L, Zhang X, Zhu Y, Wang H, Qu X, Gao R, Yin F, Liu X, Qin H (2020) The association of post-stroke cognitive impairment and gut microbiota and its corresponding metabolites. J Alzheimers 73(4):1455–1466. https://doi.org/10.3233/JAD-191066

    Article  Google Scholar 

  56. Longstreth WT, Meschke JS, Davidson SK, Smoot LM, Smoot JC, Koepsell TD (2005) Hypothesis: a motor neuron toxin produced by a clostridial species residing in the gut causes ALS. Med Hypotheses 64:1153–1156. https://doi.org/10.1016/j.mehy.2004.07.041

    Article  CAS  PubMed  Google Scholar 

  57. Lyon L (2018) ‘All disease begins in the gut’: was Hippocrates right? Brain 141(3):e20. https://doi.org/10.1093/brain/awy017

    Article  PubMed  Google Scholar 

  58. Ma B, Liang J, Dai M, Wang J, Luo J, Zhang Z, Jing J (2019) Altered gut microbiota in Chinese children with autism spectrum disorders. Front Cell Infect Microbiol 9:40. https://doi.org/10.3389/fcimb.2019.00040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma EL, Smith AD, Desai N, Cheung L, Hanscom M, Stoica BA, Loane DJ, Shea-Donohue T, Faden AI (2017) Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav Immun 66:56–69. https://doi.org/10.1016/j.bbi.2017.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S. https://doi.org/10.1093/ajcn/69.5.1035s

    Article  CAS  PubMed  Google Scholar 

  61. Mandrioli J, Amedei A, Cammarota G, Niccolai E, Zucchi E, D’Amico R et al (2019) FETR-ALS study protocol: a randomized clinical trial of fecal microbiota transplantation in amyotrophic lateral sclerosis. Front Neurol 10:1021. https://doi.org/10.3389/fneur.2019.01021

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mazzini L, Mogna L, De Marchi F, Amoruso A, Pane M, Aloisio I et al (2018) Potential role of gut microbiota in ALS pathogenesis and possible novel therapeutic strategies. J Clin Gastroenterol 52(1):S68–S70. https://doi.org/10.1097/MCG.0000000000001042

    Article  CAS  PubMed  Google Scholar 

  63. McBurney MI, Davis C, Fraser CM, Schneeman BO, Huttenhower C, Verbeke K et al (2019) Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J Nutr 149(11):1882–1895. https://doi.org/10.1093/jn/nxz154

    Article  PubMed  PubMed Central  Google Scholar 

  64. Miller I (2018) The gut-brain axis: historical reflections. Microb Ecol Health 29. https://doi.org/10.1080/16512235.2018.1542921

  65. Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, Hirayama M (2017) Progression of Parkinson’s disease is associated with gut dysbiosis: two-year follow-up study. PLoS One 12:e0187307. https://doi.org/10.1371/journal.pone.0187307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150. https://doi.org/10.1016/0304-3940(94)90508-8

    Article  CAS  PubMed  Google Scholar 

  67. OCEBM Levels of Evidence Working Group (2011) "The Oxford 2011 levels of evidence". Oxford Centre for Evidence-Based Medicine. http://www.cebm.net/index.aspx?o=5653

  68. Oleskin AV, Shenderov BA (2019) Probiotics and psychobiotics: the role of microbial neurochemicals. Probiotics & Antimicro Prot 11(4):1071–1085. https://doi.org/10.1007/s12602-019-09583-0

    Article  CAS  Google Scholar 

  69. Ozogul F, Esmeray K, Ozogul Y, Ozogul I (2012) The function of lactic acid bacteria on biogenic amines production by food-borne pathogens in arginine decarboxylase broth. Food Sci Technol Res 18:795–804

    Article  CAS  Google Scholar 

  70. Painter TJ, Rickerds J, Alban RF (2015) Immune enhancing nutrition in traumatic brain injury - a preliminary study. Int J Surg 21:70–74. https://doi.org/10.1016/j.ijsu.2015.07.008

    Article  PubMed  Google Scholar 

  71. Parashar A, Udayabanu M (2017) Gut microbiota: implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7. https://doi.org/10.1016/j.parkreldis.2017.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  72. Peng A, Qi X, Lai W, Li W, Zhang L, Zhu X et al (2018) Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 147:102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  73. Peter I, Dubinsky M, Bressman S, Park A, Lu C, Chen N, Wang A (2018) Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol 75:939–946. https://doi.org/10.1001/jamaneurol.2018.0605

    Article  PubMed  PubMed Central  Google Scholar 

  74. Petrov VA, Saltykova IV, Zhukova IA, Alifirova VM, Zhukova NG, Dorofeeva YB, Tyakht AV, Kovarsky BA, Alekseev DG, Kostryukova ES, Mironova YS, Izhboldina OP, Nikitina MA, Perevozchikova TV, Fait EA, Babenko VV, Vakhitova MT, Govorun VM, Sazonov AE (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162(6):734–737. https://doi.org/10.1007/s10517-017-3700-7

    Article  CAS  PubMed  Google Scholar 

  75. Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB, Biocca S, Stefani A, Desideri A (2019) Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat Disord 65:124–130. https://doi.org/10.1016/j.parkreldis.2019.06.003

    Article  PubMed  Google Scholar 

  76. Plaza-Díaz J, Gómez-Fernández A, Chueca N, de la Torre-Aguilar MJ, Gil Á, Perez-Navero JL et al (2019) Autism spectrum disorder (ASD) with and without mental regression is associated with changes in the fecal microbiota. Nutrients 11(2):337. https://doi.org/10.3390/nu11020337

    Article  CAS  PubMed Central  Google Scholar 

  77. Podolsky SH (2012) Metchnikoff and the microbiome. Lancet 380:1810–1811

    Article  PubMed  Google Scholar 

  78. Pokusaeva K, Johnson C, Kuk B, Uribe G, Fu Y, Oezguen N et al (2017) GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol Motil 29(1):e12904. https://doi.org/10.1111/nmo.12904

    Article  CAS  Google Scholar 

  79. Pulikkan J, Maji A, Dhakan DB, Saxena R, Mohan B, Anto MM, Agarwal N, Grace T, Sharma VK (2018) Gut microbial dysbiosis in Indian children with autism spectrum disorders. Microb Ecol 76(4):1102–1114. https://doi.org/10.1007/s00248-018-1176-2

    Article  CAS  PubMed  Google Scholar 

  80. Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N, Chen SD, Xiao Q (2018) Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun 70:194–202. https://doi.org/10.1016/j.bbi.2018.02.016

    Article  PubMed  Google Scholar 

  81. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M et al (2009) Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun 23:55–63. https://doi.org/10.1016/j.bbi.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  82. Rekdal VM, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP (2019) Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364(6445):eaau6323. https://doi.org/10.1126/science.aau6323

    Article  PubMed Central  Google Scholar 

  83. Robson D (2019) How the bacteria inside you could affect your mental health. Microbes and me. In: BBC- Future. Available via: https://www.bbc.com/future/article/20190218-how-the-bacteria-inside-you-could-affect-your-mental-health. Accessed 18 Feb 2020.

  84. Roubaud-Baudron C, Krolak-Salmon P, Quadrio I, Mégraud F, Salles N (2012) Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol Aging 33:1009–1009.e19. https://doi.org/10.1016/j.neurobiolaging.2011.10.021

    Article  CAS  PubMed  Google Scholar 

  85. Saji N, Niida S, Murotani K, Tsuduki T, Sugimoto T, Kimura A et al (2019) Analysis of the relationship between the gut microbiome and dementia: a cross-sectional study conducted in Japan. Sci Rep 9:1008. https://doi.org/10.1038/s41598-018-38218-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069

    Article  PubMed  Google Scholar 

  87. Shindler-Itskovitch T, Ravona-Springer R, Leibovitz A, Muhsen K (2016) A systematic review and meta-analysis of the association between Helicobacter pylori infection and dementia. J Alzheimers Dis 52(4):1431–1442. https://doi.org/10.3233/JAD-160132

    Article  PubMed  Google Scholar 

  88. Sommer F, Bäckhed F (2013) The gut microbiota - masters of host development and physiology. Nat Rev Microbiol 11(4):227–238. https://doi.org/10.1038/nrmicro2974

    Article  CAS  PubMed  Google Scholar 

  89. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Bain Res 1693:128–133. https://doi.org/10.1016/j.brainres.2018.03.015

    Article  CAS  Google Scholar 

  90. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun J, Zhan Y, Mariosa D, Larsson H, Almqvist C, Ingre C, Zagai U, Pawitan Y, Fang F (2019) Antibiotics use and risk of amyotrophic lateral sclerosis in Sweden. Eur J Neurol 26(11):1355–1361. https://doi.org/10.1111/ene.13986

    Article  CAS  PubMed  Google Scholar 

  92. Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis in inflammatory bowel disease. Gut 53:1–4. https://doi.org/10.1136/gut.53.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tan C, Wu Q, Wang H, Gao X, Xu R, Cu Z et al (2020) Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN J Parenter Enteral Nutr. https://doi.org/10.1002/jpen.1861

  94. Tan M, Zhu JC, Du J, Zhang LM, Yin HH (2011) Effects of probiotics on serum levels of Th1/Th2 cytokine and clinical outcomes in severe traumatic brain-injured patients: a prospective randomized pilot study. Crit Care 15(6):R290. https://doi.org/10.1186/cc10579

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tsavkelova EA, Botvinlo IV, Kudrin VS, Oleskin AV (2000) Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl Biochem 372:115–117

    CAS  PubMed  Google Scholar 

  96. Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Bürmann J, Faßbender K, Schwiertz A, Schäfer KH (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  97. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 10(1):310. https://doi.org/10.1038/sd41467-019-08294-y

    Article  PubMed  PubMed Central  Google Scholar 

  98. Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977-2014. Gut 68:18–24. https://doi.org/10.1136/gutjnl-2017-315666

    Article  CAS  PubMed  Google Scholar 

  99. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537. https://doi.org/10.1038/s41598-017-13601-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walsh J, Griffin BT, Clarke G, Hyland NP (2018) Drug–gut microbiota interactions: implications for neuropharmacology. Br J Pharmacol 175(24):4415–4429. https://doi.org/10.1111/bph.14366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wan G, Wang L, Zhang G, Zhang J, Lu Y, Li J, Yi X (2019) Effects of probiotics combined with early enteral nutrition on endothelin-1 and C-reactive protein levels and prognosis in patients with severe traumatic brain injury. J Int Med Res 48:030006051988811. https://doi.org/10.1177/0300060519888112

    Article  CAS  Google Scholar 

  102. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2011) Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol 77(18):6718–6721. https://doi.org/10.1128/AEM.05212-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57(8):2096–2102. https://doi.org/10.1007/s10620-012-2167-7

    Article  CAS  PubMed  Google Scholar 

  104. Wang W, Li X, Yao X, Cheng X, Zhu Y (2018) The characteristics analysis of intestinal microecology on cerebral infarction patients and its correlation with apolipoprotein E. Med (Baltimore) 97(41):e12805. https://doi.org/10.1097/MD.0000000000012805

    Article  CAS  Google Scholar 

  105. Wang Y, Li N, Yang J-J, Zhao D-M, Chen B, Zhang G-Q, Chen S, Cao RF, Yu H, Zhao CY, Zhao L, Ge YS, Liu Y, Zhang LH, Hu W, Zhang L, Gai ZT (2020) Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol Res 157:104784. https://doi.org/10.1016/j.phrs.2020.104784

    Article  CAS  PubMed  Google Scholar 

  106. Xia G-H, You C, Gao X-X, Zeng X-L, Zhu J-J, Xu K-Y, Tan CH, Xu RT, Wu QH, Zhou HW, He Y, Yin J (2019) Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol 10:397. https://doi.org/10.3389/fneur.2019.00397

    Article  PubMed  PubMed Central  Google Scholar 

  107. Xie G, Zhou Q, Qiu C-Z, Dai W-K, Wang HP, Li Y-H, Liao JX, Lu XG, Lin SF, Ye JH, Ma ZY, Wang WJ (2017) Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 23(33):6164–6171. https://doi.org/10.3748/wjg.v23.i33.6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, Takahashi T, Tsuji H, Asahara T, Hattori N (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One 12(2):e0171521. https://doi.org/10.1371/journal.pone.0171521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. https://doi.org/10.1038/nature11053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yeom JS, Park JS, Kim Y-S, Kim RB, Choi D-S, Chung J-Y, Han TH, Seo JH, Park ES, Lim JY, Woo HO, Youn HS, Park CH (2019) Neonatal seizures and white matter injury: role of rotavirus infection and probiotics. Brain Dev 41(1):19–28. https://doi.org/10.1016/j.braindev.2018.07.001

    Article  PubMed  Google Scholar 

  111. Yin J, Liao S-X, He Y, Wang S, Xia G-H, Liu F-T, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW (2015) Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 4(11). https://doi.org/10.1161/JAHA.115.002699

  112. Zeng X, Gao X, Peng Y, Wu Q, Zhu J, Tan C, Xia G, You C, Xu R, Pan S, Zhou H, He Y, Yin J (2019) Higher risk of stroke is correlated with increased opportunistic pathogen load and reduced levels of butyrate-producing bacteria in the gut. Front Cell Infect Microbiol 9:4. https://doi.org/10.3389/fcimb.2019.00004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhai CD, Zheng JJ, An BC, Huang HF, Tan ZC (2019) Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses. Chin Med J 132(15):1815–1822. https://doi.org/10.1097/CM9.0000000000000351

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhang C, Jing Y, Zhang W, Zhang J, Yang M, Du L et al (2019) Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am J Transl Res 11(8):4817–4834

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang C, Zhang W, Zhang J, Jing Y, Yang M, Du L et al (2018) Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med 16(1):353. https://doi.org/10.1186/s12967-018-1735-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y (2018) Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 145:163–168. https://doi.org/10.1016/j.eplepsyres.2018.06.015

    Article  PubMed  Google Scholar 

  117. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, Lü Y, Cai M, Zhu C, Tan YL, Zheng P, Li HY, Zhu J, Zhou HD, Bu XL, Wang YJ (2018) Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 63(4):1337–1346. https://doi.org/10.3233/JAD-180176

    Article  CAS  PubMed  Google Scholar 

Download references

Code availability

Not applicable for this literature review.

Author information

Authors and Affiliations

Authors

Contributions

Sharma P conceptualized the idea and Agrawal A helped with further development of the concept. Sharma P took the lead in writing the manuscript and Agrawal A aided in data collection. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Abhishek Agrawal.

Ethics declarations

Ethics approval

Not applicable for this literature review.

Consent to participate

This article, being a literature review, does not contain any studies with human participants performed by any of the authors, and is based solely on the analysis of previously published literature.

Consent for publication

Not applicable for this literature review.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Message: Gut dysbiosis is linked to neuro-psychiatric, neuro-degenerative diseases, and neurosurgical disorders. Gut microbiome may play a neuroprotective role in traumatic brain and spine injuries. Further studies mandated to validate inclusion of probiotics in treatment regimens of these disorders.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Agrawal, A. Does modern research validate the ancient wisdom of gut flora and brain connection? A literature review of gut dysbiosis in neurological and neurosurgical disorders over the last decade. Neurosurg Rev 45, 27–48 (2022). https://doi.org/10.1007/s10143-021-01516-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01516-2

Keywords

Navigation