Skip to main content

Gut Microbiota and Neurologic Diseases and Injuries

  • Chapter
  • First Online:
Gut Microbiota and Pathogenesis of Organ Injury

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1238))

Abstract

The brain–gut axis is a bidirectional communication pathway connecting the central nervous system (CNS) and the gastrointestinal tract via nerve transmission, hormone, immune system, and other molecular signals. The bacterial flora of the human gut contributes direct and indirect signals to the CNS along the brain–gut axis. Alterations in gut flora, a state known as dysbiosis, has been tied to systemic inflammation, increased bacterial translocation, and increased absorbance of microbial by-products. An increase in recent literature has highlighted the role of the gut–brain axis in CNS pathology. This chapter reviews the association between gut flora dysbiosis and disorders of the central nervous system including autoimmune disease, developmental disorders, physiologic response to traumatic injury, and neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38:1–12. https://doi.org/10.1016/j.bbi.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  2. Sundman MH, Chen N-K, Subbian V, Chou Y-H (2017) The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun 66:31–44. https://doi.org/10.1016/j.bbi.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  3. Flowers SA, Ellingrod VL (2015) The microbiome in mental health: potential contribution of gut microbiota in disease and pharmacotherapy management. Pharmacotherapy. 35(10):910–916. https://doi.org/10.1002/phar.1640

    Article  PubMed  Google Scholar 

  4. Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314. https://doi.org/10.1038/nrgastro.2009.35

    Article  CAS  PubMed  Google Scholar 

  5. Ghaisas S, Maher J, Kanthasamy A (2016) Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther 158:52–62. https://doi.org/10.1016/j.pharmthera.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  6. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK (2016) The central nervous system and the gut microbiome. Cell 167(4):915–932. https://doi.org/10.1016/j.cell.2016.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grenham S, Clarke G, Cryan JF, Dinan TG (2011) Brain–gut–microbe communication in health and disease. Front Physiol 2:94. https://doi.org/10.3389/fphys.2011.00094

  8. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45(3):601–613. https://doi.org/10.1017/S003329171400172X

    Article  CAS  PubMed  Google Scholar 

  9. Hallmayer J, Cleveland S, Torres A et al (2011) Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry 68(11):1095–1102. https://doi.org/10.1001/archgenpsychiatry.2011.76

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vuong HE, Hsiao EY (2017) Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry 81(5):411–423. https://doi.org/10.1016/j.biopsych.2016.08.024

    Article  PubMed  Google Scholar 

  11. Grabrucker AM (2013) Environmental factors in autism. Front Psychiatry 3:118. https://doi.org/10.3389/fpsyt.2012.00118

  12. Wang LW, Tancredi DJ, Thomas DW (2011) The prevalence of gastrointestinal problems in children across the United States with autism spectrum disorders from families with multiple affected members. J Dev Behav Pediatr 32(5):351–360. https://doi.org/10.1097/DBP.0b013e31821bd06a

    Article  PubMed  Google Scholar 

  13. Song Y, Liu C, Finegold SM (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70(11):6459–6465. https://doi.org/10.1128/AEM.70.11.6459-6465.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(10):987–991. https://doi.org/10.1099/jmm.0.46101-0

    Article  PubMed  Google Scholar 

  15. Mulle JG, Sharp WG, Cubells JF (2013) The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep 15(2):337. https://doi.org/10.1007/s11920-012-0337-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. de Magistris L, Familiari V, Pascotto A et al (2010) Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J Pediatr Gastroenterol Nutr 51(4):418–424. https://doi.org/10.1097/MPG.0b013e3181dcc4a5

    Article  PubMed  Google Scholar 

  17. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA (2012) Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig Dis Sci 57(8):2096–2102. https://doi.org/10.1007/s10620-012-2167-7

    Article  CAS  PubMed  Google Scholar 

  18. Emanuele E, Orsi P, Boso M et al (2010) Low-grade endotoxemia in patients with severe autism. Neurosci Lett 471(3):162–165. https://doi.org/10.1016/j.neulet.2010.01.033

    Article  CAS  PubMed  Google Scholar 

  19. Onore CE, Nordahl CW, Young GS, Van de Water JA, Rogers SJ, Ashwood P (2012) Levels of soluble platelet endothelial cell adhesion molecule-1 and P-selectin are decreased in children with autism spectrum disorder. Biol Psychiatry 72(12):1020–1025. https://doi.org/10.1016/j.biopsych.2012.05.004

  20. Fiorentino M, Sapone A, Senger S et al (2016) Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 7(1):49. https://doi.org/10.1186/s13229-016-0110-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. MacFabe DF, Cain NE, Boon F, Ossenkopp K-P, Cain DP (2011) Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: Relevance to autism spectrum disorder. Behav Brain Res 217(1):47–54. https://doi.org/10.1016/j.bbr.2010.10.005

    Article  CAS  PubMed  Google Scholar 

  22. MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microb Ecol Health Dis 23(1):19260. https://doi.org/10.3402/mehd.v23i0.19260

    Article  CAS  Google Scholar 

  23. Li Q, Han Y, Dy ABC, Hagerman RJ (2017) The gut microbiota and autism spectrum disorders. Front Cell Neurosci 11:120. https://doi.org/10.3389/fncel.2017.00120

  24. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909. https://doi.org/10.1016/S0896-6273(03)00568-3

    Article  CAS  PubMed  Google Scholar 

  25. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Adler CH, Beach TG (2016) Neuropathological basis of non-motor manifestations of Parkinson’s disease. Mov Disord 31(8):1114–1119. https://doi.org/10.1002/mds.26605

    Article  Google Scholar 

  27. Abbott RD, Ross GW, Petrovitch H et al (2007) Bowel movement frequency in late-life and incidental Lewy bodies. Mov Disord 22(11):1581–1586. https://doi.org/10.1002/mds.21560

    Article  Google Scholar 

  28. Klingelhoefer L, Reichmann H (2015) Pathogenesis of Parkinson disease–the gut-brain axis and environmental factors. Nat Rev Neurol 11(11):625–636. https://doi.org/10.1038/nrneurol.2015.197

    Article  CAS  PubMed  Google Scholar 

  29. Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211. https://doi.org/10.1016/S0197-4580(02)00065-9

    Article  PubMed  Google Scholar 

  30. Hill-Burns EM, Debelius JW, Morton JT et al (2017) Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749. https://doi.org/10.1002/mds.26942

    Article  CAS  Google Scholar 

  31. Scheperjans F, Aho V, Pereira PAB et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358. https://doi.org/10.1002/mds.26069

    Article  Google Scholar 

  32. Unger MM, Spiegel J, Dillmann K-U et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  33. Devos D, Lebouvier T, Lardeux B et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48. https://doi.org/10.1016/j.nbd.2012.09.007

    Article  CAS  PubMed  Google Scholar 

  34. Forsyth CB, Shannon KM, Kordower JH et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6(12):e28032. https://doi.org/10.1371/journal.pone.0028032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lebouvier T, Neunlist M, Bruley des Varannes S, et al (2010) Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5(9):e12728. https://doi.org/10.1371/journal.pone.0012728

  36. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802(1):2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

    Article  CAS  Google Scholar 

  37. Cummings JL, Vinters HV, Cole GM, Khachaturian ZS (1998) Alzheimer’s disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51(1 Suppl 1):S2–S17; discussion S65–S67

    Google Scholar 

  38. Vogt NM, Kerby RL, Dill-McFarland KA et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7(1):13537. https://doi.org/10.1038/s41598-017-13601-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Minter MR, Zhang C, Leone V et al (2016) Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep 6:30028. https://doi.org/10.1038/srep30028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ascherio A, Munger K (2008) Epidemiology of multiple sclerosis: from risk factors to prevention. Semin Neurol 28(1):17–28. https://doi.org/10.1055/s-2007-1019126

    Article  PubMed  Google Scholar 

  41. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558. https://doi.org/10.1038/nri3871

    Article  CAS  PubMed  Google Scholar 

  42. Jangi S, Gandhi R, Cox LM et al (2016) Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7:12015. https://doi.org/10.1038/ncomms12015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyake S, Kim S, Suda W et al (2015) Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 10(9):e0137429. https://doi.org/10.1371/journal.pone.0137429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jhangi S, Gandhi R, Glanz B, et al (2014) Increased Archaea species and changes with therapy in gut microbiome of multiple sclerosis subjects (S24.001). Neurology 82(10 Supplement):S24.001

    Google Scholar 

  45. McDermott AJ, Huffnagle GB (2014) The microbiome and regulation of mucosal immunity. Immunology 142(1):24–31. https://doi.org/10.1111/imm.12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berer K, Mues M, Koutrolos M et al (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479(7374):538–541. https://doi.org/10.1038/nature10554

    Article  CAS  PubMed  Google Scholar 

  47. Mielcarz DW, Kasper LH (2015) The gut microbiome in multiple sclerosis. Curr Treat Options Neurol 17(4):18. https://doi.org/10.1007/s11940-015-0344-7

    Article  Google Scholar 

  48. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622. https://doi.org/10.1073/pnas.1000082107

    Article  PubMed  Google Scholar 

  49. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.1476-5381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al (2009) Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol 183(10):6041–6050. https://doi.org/10.4049/jimmunol.0900747

  51. Adams GC, Balbuena L, Meng X, Asmundson GJG (2016) When social anxiety and depression go together: a population study of comorbidity and associated consequences. J Affect Disord 206:48–54. https://doi.org/10.1016/j.jad.2016.07.031

    Article  PubMed  Google Scholar 

  52. Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(S1):2–19. https://doi.org/10.1002/1520-6394(2000)12:1+%3c2::aid-da2%3e3.0.co;2-4

  53. Board F, Persky H, Hamburg DA (1956) Psychological stress and endocrine functions. Psychosom Med 18(4):324–333

    Article  CAS  Google Scholar 

  54. Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383

    PubMed  PubMed Central  Google Scholar 

  55. Mayer EA, Craske M, Naliboff BD (2001) Depression, anxiety, and the gastrointestinal system. J Clin Psychiatry 62(Suppl 8):28–36; discussion 37

    Google Scholar 

  56. Park AJ, Collins J, Blennerhassett PA, et al (2013) Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 25(9):733-e575. https://doi.org/10.1111/nmo.12153

  57. Diaz Heijtz R, Wang S, Anuar F et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108(7):3047–3052. https://doi.org/10.1073/pnas.1010529108

    Article  PubMed  Google Scholar 

  58. Neufeld KAM, Kang N, Bienenstock J, Foster JA (2011) Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4(4):492–494. https://doi.org/10.4161/cib.4.4.15702

  59. Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275. https://doi.org/10.1113/jphysiol.2004.063388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170(4):1179–1188. https://doi.org/10.1016/j.neuroscience.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  61. Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ait-Belgnaoui A, Durand H, Cartier C et al (2012) Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 37(11):1885–1895. https://doi.org/10.1016/j.psyneuen.2012.03.024

    Article  CAS  PubMed  Google Scholar 

  63. Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths 2002–2006. Atlanta: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control

    Google Scholar 

  64. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation 22(5):341–353

    Article  Google Scholar 

  65. Ovbiagele B, Nguyen-Huynh MN (2011) Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics 8(3):319–329. https://doi.org/10.1007/s13311-011-0053-1

    Article  PubMed  PubMed Central  Google Scholar 

  66. Toklu HZ, Sakarya Y, Tümer N (2017) A proteomic evaluation of sympathetic activity biomarkers of the hypothalamus-pituitary-adrenal axis by western blotting technique following experimental traumatic brain injury. Methods Mol Biol 1598:313–325. https://doi.org/10.1007/978-1-4939-6952-4_16

    Article  CAS  Google Scholar 

  67. Kharrazian D (2015) Traumatic brain injury and the effect on the brain-gut axis. Altern Ther Health Med 21(Suppl 3):28–32

    PubMed  Google Scholar 

  68. Kigerl KA, Hall JCE, Wang L, Mo X, Yu Z, Popovich PG (2016) Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med 213(12):2603–2620. https://doi.org/10.1084/jem.20151345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishio J, Honda K (2012) Immunoregulation by the gut microbiota. Cell Mol Life Sci 69(21):3635–3650. https://doi.org/10.1007/s00018-012-0993-6

    Article  CAS  PubMed  Google Scholar 

  70. Hang C-H, Shi J-X, Li J-S, Li W-Q, Yin H-X (2005) Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol 11(8):1149–1154. https://doi.org/10.3748/wjg.v11.i8.1149

    Article  CAS  PubMed  Google Scholar 

  71. Wen L, You W, Wang H, Meng Y, Feng J, Yang X (2018) Polarization of microglia to the M2 phenotype in a peroxisome proliferator-activated receptor gamma-dependent manner attenuates axonal injury induced by traumatic brain injury in mice. J Neurotrauma 35(19):2330–2340. https://doi.org/10.1089/neu.2017.5540

    Article  PubMed  Google Scholar 

  72. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kremlev SG, Palmer C (2005) Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 162(1–2):71–80. https://doi.org/10.1016/j.jneuroim.2005.01.010

    Article  CAS  PubMed  Google Scholar 

  74. Singh V, Roth S, Llovera G et al (2016) Microbiota dysbiosis controls the neuroinflammatory response after stroke. J Neurosci 36(28):7428–7440. https://doi.org/10.1523/JNEUROSCI.1114-16.2016

    Article  CAS  Google Scholar 

  75. Benakis C, Brea D, Caballero S et al (2016) Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med 22(5):516–523. https://doi.org/10.1038/nm.4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sun G, Yang S, Cao G et al (2018) γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med 215(2):521–535. https://doi.org/10.1084/jem.20170686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen G, Shi J, Jin W et al (2008) Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann Clin Lab Sci 38(1):65–74

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Grandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyler Patterson, T., Grandhi, R. (2020). Gut Microbiota and Neurologic Diseases and Injuries. In: Chen, P. (eds) Gut Microbiota and Pathogenesis of Organ Injury. Advances in Experimental Medicine and Biology, vol 1238. Springer, Singapore. https://doi.org/10.1007/978-981-15-2385-4_6

Download citation

Publish with us

Policies and ethics