Skip to main content
Log in

Use of gene expression profile to identify potentially relevant transcripts to myofibrillar fragmentation index trait

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The myofibrillar fragmentation index (MFI) is an indicative trait for meat tenderness. Longissimus thoracis muscle samples from the 20 most extreme bulls (out of 80 bulls set) for MFI (high (n = 10) and low (n = 10) groups) trait were used to perform transcriptomic analysis, using RNA Sequencing (RNA-Seq). An average of 24.616 genes was expressed in the Nellore muscle transcriptome analysis. A total of 96 genes were differentially expressed (p value ≤ 0.001) between the two groups of divergent bulls for MFI. The HEBP2 and BDH1 genes were overexpressed in animals with high MFI. The MYBPH and MYL6, myosin encoders, were identified. The differentially expressed genes were related to increase mitochondria efficiency, especially in cells under oxidative stress conditions, and these also were related to zinc and calcium binding, membrane transport, and muscle constituent proteins, such as actin and myosin. Most of those genes were involved in metabolic pathways of oxidation-reduction, transport of lactate in the plasma membrane, and muscle contraction. This is the first study applying MFI phenotypes in transcriptomic studies to identify and understand differentially expressed genes for beef tenderness. These results suggest that differences detected in gene expression between high and low MFI animals are related to reactive mechanisms and structural components of oxidative fibers under the condition of cellular stress. Some genes may be selected as positional candidate genes to beef tenderness, MYL6, MYBPH, TRIM63, TRIM55, TRIOBP, and CHRNG genes. The use of MFI phenotypes could enhance results of meat tenderness studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arneson-Wissink PC, Ducharme AM, Doles JD (2020) A novel transplantable model of lung cancer-associated tissue loss and disrupted muscle regeneration. Skelet Muscle 10:6. https://doi.org/10.1186/s13395-020-00225-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azim S, Anday AR, Sarwar T, Tabish M (2012) Alternatively spliced variants of gamma-subunit of muscle-type acetylcholine receptor in fetal and adult skeletal muscle of mouse. Cell Mol Neurobiol 32:957–963

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:1289–1300

    Google Scholar 

  • Berton MP, Fonseca LFS, Gimenez DF, Utembergue BL, Cesar AS, Coutinho LL, de Lemos MV, Aboujaoude C, Pereira AS, Silva RM, Stafuzza NB, Feitosa FL, Chiaia HL, Olivieri BF, Peripolli E, Tonussi RL, Gordo DM, Espigolan R, Ferrinho AM, Mueller LF, de Albuquerque LG, de Oliveira HN, Duckett S, Baldi F (2016) Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genomics 17(1):972

    Article  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25(8):1091–1093

    Article  CAS  Google Scholar 

  • Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1 American Journal of Physiology – Endocrinologyand. Metabolism 307(6):E469–E484

    CAS  Google Scholar 

  • Braz CU, Taylor JF, Bresolin T, Espigolan R, Feitosa FLB, Carvalheiro R, Baldi F, de Albuquerque LG, de Oliveira HN (2019) Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genet 20(1):8. https://doi.org/10.1186/s12863-019-0713-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Cánovas A, Casellas J, Thomas M, Medrano JF (2017) Applying new genomic technologies to accelerate genetic improvement in beef and dairy cattle. Proc Assoc Advmt Anim Breed Genet 22:377–383

    Google Scholar 

  • Cardoso TF, Quintanilla R, Castello A, Gonzalez-Prendes R, Amilis M, Canovas A (2018) Differential expression of mRNA isoforms in the skeletal muscle of pigs with distinct growth and fatness profiles. BMC Genomics 19:145

    Article  Google Scholar 

  • Castro LM, Magnabosco CU, Sainz RD, Faria CU, Lopes FB (2014) Genetic analysis for meat tenderness trait in cattle. Rev Ciênc Agron 45(2):393–402

    Article  Google Scholar 

  • Castro M, Rosa GJM, Lopes FB, Regitano CA, Rosa AJM, Magnabosco CU (2017) Genome wide association mapping and pathway analysis of meat tenderness in Polled Nellore cattle J. Anim Sci 95:1945–1956. https://doi.org/10.2527/jas2016.1348

    Article  CAS  Google Scholar 

  • Cesar ASM, Regitano LCA, Koltes JE, Fritz-Waters ER, Lanna DPD, Gasparin G, Mourão GB, Oliveira PSN, Reecy JM, Coutinho LL (2015) Putative regulatory factors associated with intramuscular fat content. PlosOne 10(6). https://doi.org/10.1371/journal.pone.0128350

  • Chen Q, Ma Z, Wang X, Li Z, Zhang Y, Ma S, Zhao P, Xia Q (2015) Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 15:611–637. https://doi.org/10.1007/s10142-015-0461-0

    Article  CAS  PubMed  Google Scholar 

  • Culler RD, Parrish FC Jr, Smith GC, Cross HR (1978) Relationship of myofibril fragmentation to certain chemical, physical and sensory characteristics of bovine longissimus muscle. J Food Sci 43:1177

    Article  CAS  Google Scholar 

  • Dai W, Zou Y, White RR, Liu JX, Liu HY (2018) Transcriptomic profiles of the bovine mammary gland during lactation and the dry period. Funct Integr Genomics 18:125–140. https://doi.org/10.1007/s10142-017-0580-x

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M (2015) Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteom 14(4):841–853. https://doi.org/10.1074/mcp.M114.044222

    Article  CAS  Google Scholar 

  • Dixon DM, Choi J, El-Ghazali A, Roos KP, Jordan MC, Fishbein MC, Comai L, Reddy S (2015) Loss of muscle blind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms. Sci Rep 12:5–9042. https://doi.org/10.1038/srep09042

    Article  CAS  Google Scholar 

  • Ellies-Oury MP, Durand Y, Delamarche F, Jouanno M, Lambert J, Micol D, Dumont R (2013) Relationships between the assessment of `grain of meat’ and meat tenderness of Charolais cattle. Meat Sci 93(3):397–404

    Article  CAS  Google Scholar 

  • Fisher AG, Seaborne RA, Stewart C, Coulson JM, Sharples AP, Jarvis JC (2017) Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle. FASEB J. https://doi.org/10.1096/fj.201700089RR

  • Fonseca LFS, Gimenez DFJ, Silva DBS, Barthelson R, Baldi F, Ferro JA, Albuquerque LG (2017) Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness. BMC Genomics 18:945. https://doi.org/10.1186/s12864-017-4323-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca LFS, Silva DBS, Gimenez DFJ, Baldi F, Ferro JA, Chardulo LAL, de Albuquerque LG (2020) Gene expression profiling and identification of hub genes in Nellore cattle with different marbling score levels. Gemonics 112(1):873–879. https://doi.org/10.1016/j.ygeno.2019.06.001

    Article  CAS  Google Scholar 

  • Gagaoua M, Terlouw EM, Boudjellal A, Picard B (2015) Coherent correlation networks among protein biomarkers of beef tenderness: what they reveal. J Proteome 14(128):365–374

    Article  Google Scholar 

  • Goff SA, Vaughn M, McKay S, Lyons E, Stapleton AE, Gessler D, Stanzione D (2011) The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci 2:34

    Article  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177(2):751–766

    CAS  PubMed  Google Scholar 

  • Hayashi H, Nakagami H, Takami Y, Koriyama H, Mori M, Tamai K, Sun J, Nagao K, Morishita R, Kaneda Y (2009) FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1. Arterioscler Thromb Vasc Biol 29:909–914

    Article  CAS  Google Scholar 

  • Hocquette JF, Wezemael V, Chriki L, Legrand S, Verbeke Z, Farmer W, Scollan L, Polkinghorne ND, Rødbotten R, Allen R, Pethick ND (2014) Modelling of beef sensory quality for a better prediction of palatability. Meat Sci 97(3):316–322

    Article  Google Scholar 

  • Hopkins DL, Littlefield PJ, Thompson JM (2000) A research note on factors affecting the determination of myofibrillar fragmentation. Meat Sci 56:19–22

    Article  CAS  Google Scholar 

  • Hudson NJ, Reverter A, Griffiths WJ, Yutuc E, Wang Y, Jeanes A, McWilliam S, Pethick DW, Greenwood PL (2020) Gene expression identifies metabolic and functional differences between intramuscular and subcutaneous adipocytes in cattle. BMC Genomics 21:77–23. https://doi.org/10.1186/s12864-020-6505-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Olson EN, Moore SS, Basarab JA, Basu U, Guan LL (2012) Transcriptome analysis of subcutaneous adipose tissues in beef cattle using 3′ digital gene expression-tag profiling. J Anim Sci 90:171–183

    Article  CAS  Google Scholar 

  • Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH, Choi BH, Chun T, Kang SW, Lee YS, Kim JW, Schnabel RD, Taylor JF, Choi I (2012) Depot-specific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells and differentiation of preadipocytes. Genomics 100(3):195–202. https://doi.org/10.1016/j.ygeno201206005

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim M, Park J, Tran Q, Hong Y, Cho H, Park S, Hong S, Brazil DP, Kim SH, Park J (2018) The roles of TRIO and F-actin-binding protein in glioblastoma cells. Mol Med Rep 17(3):4540–4546. https://doi.org/10.3892/mmr20188458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu Z, Li H, Xiong Y, Zuo B (2010) Differential transcriptional analysis between redand white skeletal muscle of. Chin Meishan pigs Int J Biol Sci 276(4):350–360

    Article  Google Scholar 

  • Li X, Li C, Xu Y, Yao R, Li H, Ni W, Quan R, Zhang M, Liu L, Yu S, Ullah Y, Hu R, Li Y, Guo T, Wang X, Hu S (2020a) Analysis of pituitary transcriptomics indicates that lncRNAs are involved in the regulation of sheep estrus. Funct Integr Genomics:1–11. https://doi.org/10.1007/s10142-020-00735-y

  • Li R, Zeng W, Ma M, Wei Z, Liu H, Liu X, Wang M, Shi X, Zeng J, Yang L, Mo D, Liu X, Chen Y, He Z (2020b) Precise editing of myostatin signal peptide by CRISPR/Cas9 increases the muscle mass of Liang Guang Small Spotted pigs. Transgenic Res 29:149–163. https://doi.org/10.1007/s11248-020-00188-w

    Article  CAS  PubMed  Google Scholar 

  • Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J (2016) How do muscle structure and composition determine the meat and flesh quality. Sci World J 14:3182746

    Google Scholar 

  • Liu H, Xi Y, Liu G, Zhao Y, Li J, Lei M (2018) Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct Integr Genomics 18:195–209. https://doi.org/10.1007/s10142-017-0584-6

    Article  CAS  PubMed  Google Scholar 

  • Lorda-Diez CI, Montero JA, Sanchez-Fernandez C, Garcia-Porrero JA, Chimal-Monroy J, Hurle JM (2018) Four and a half domain 2 (FHL2) scaffolding protein is a marker of connective tissues of developing digits and regulates fibrogenic differentiation of limb mesodermal progenitors. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2637

  • Magalhães AFB, Camargo GMF, Fernandes GA Jr, Gordo DGM, Tonussi RL, Costa RB, Espigolan R, Silva RMO, Bresolin T, Andrade WBF, Takada L, Feitosa FLB, Baldi B, Carvalheiro R, Chardulo LAL, Albuquerque LG (2016) Genome-wide association study of meat quality traits in Nellore cattle. PLoS ONE 11(6):e0157845. https://doi.org/10.1371/journal.pone.0157845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malheiros JM, Baldassini WA, Dias VAD, Silva JAIIV, Curi RA, Chardulo LAL (2015) Chemical and sensory meat characteristics of Nellore cattle (Bos indicus) finished with different levels of backfat thickness in the longissimus thoracis muscle. Bol Indúst Animal (online) 72:341–348

    Article  Google Scholar 

  • McCabe M, Waters S, Morris D, Kenny D, Lynn CC (2012) RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance. BMC Genomics 20(13):193. https://doi.org/10.1186/1471-2164-13-193

  • Miar Y, Plastow GS, Bruce HL, Moore SS, Durunna ON, Nkumah JD, Wang Z (2014) Estimation of genetic and phenotypic parameters for ultrasound and carcass merit traits in crossbred beef cattle. Can J Anim Sci 94(2):273–280

    Article  Google Scholar 

  • Minuti A, Jahan N, Lopreiato V, Piccioli-Cappelli F, Bomba L, Capomaccio S, Loor JJ, Ajmone-Marsan P, Trevisi E (2020) Evaluation of circulating leukocyte transcriptome and its relationship with immune function and blood markers in dairy cows during the transition period. Funct Integr Genomics 20:293–305. https://doi.org/10.1007/s10142-019-00720-0

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sánchez N, Rueda J, Carabaño MJ, Reverter A, McWilliam S, González C, Díaz C (2010) Skeletal muscle specific genes networks in cattle. Funct Integr Genomics 10:609–618. https://doi.org/10.1007/s10142-010-0175-

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Akiba J, Ogasawara S, Naito Y, Nakayama M, Abe Y, Kusukawa J, Yano H (2018) SUOX is negatively associated with multistep carcinogenesis and proliferation in oral squamous cell carcinoma. Med Mol Morphol 51:102–110. https://doi.org/10.1007/s00795-017-0177-4

    Article  PubMed  Google Scholar 

  • NCBI (2020) BDH1 3-hydroxybutyrate dehydrogenase 1 [Homo sapiens (human)]. Avaliable in https://www.ncbi.nlm.nih.gov/gene/622#bibliography Accessed 13 Mar 2020

  • Olson DG, Parrish FC Jr (1977) Relationship of myofibril fragmentation index to measures of beefsteak tenderness. J Food Sci 42:506

    Article  CAS  Google Scholar 

  • Olson DG, Panish FC Jr, Stromer MH (1976) Myofibril fragmentation and shear resistance of three bovine muscles during postmortem storage. J Food Sci 41:1036

    Article  Google Scholar 

  • Padhi A, Nain AS (2020) ECM in differentiation: a review of matrix structure, composition and mechanical properties. Ann Biomed Eng 48:1071–1089. https://doi.org/10.1007/s10439-019-02337-7

    Article  PubMed  Google Scholar 

  • Park I, Han C, Jin S, Lee B, Choi H, Kwon JT, Kim D, Kim J, Lifirsu E, Park WJ, Park ZY, Kim DH, Cho C (2011) Myosin regulatory light chains are required to maintain the stability of myosin II and cellular integrity. Biochem J 434(1):171–180. https://doi.org/10.1042/BJ20101473

    Article  CAS  PubMed  Google Scholar 

  • Ramayo-Caldas Y, Fontes MR, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W (2014) Amarker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G and FOXP3 in intramuscular fat deposition of beef cattle. J Anim Sci 92:2832–2845

    Article  CAS  Google Scholar 

  • Renaville B, Bacciu N, Lanzoni M, Mossa F, Piasentier E (2018) Association of single nucleotide polymorphisms in fat metabolism candidate genes with fatty acid profiles of muscle and subcutaneous fat in heavy pigs. Meat Sci 139:220–227. https://doi.org/10.1016/j.meatsci.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  • Sabara PH, Jakhesara SJ, Panchal KJ, Joshi CG, Koringa PG (2020) Transcriptomic analysis to affirm the regulatory role of long non-coding RNA in horn cancer of Indian zebu cattle breed Kankrej (Bos indicus). Funct Integr Genomics 20:75–87. https://doi.org/10.1007/s10142-019-00700-4

    Article  CAS  PubMed  Google Scholar 

  • Silva DBS, Fonseca LFS, Pinheiro DG, Muniz MMM, Magalhaes AFB, Baldi F, Chardulo LA, Albuquerque LG (2019) Prediction of hub genes associated with intramuscular fat content in Nellore cattle. BMC Genomics 20:520

    Article  Google Scholar 

  • Soltani I, Gharbi H, Hassine IB, Bouguerra G, Douzi K, Teber M, Abbes S, Menif S (2017) Regulatory network analysis of microRNAs and genes in imatinib-resistant chronic myeloid leukemia. Funct Integr Genomics 17:263–277. https://doi.org/10.1007/s10142-016-0520-1

    Article  CAS  PubMed  Google Scholar 

  • Steinberg SF (2013) Oxidative stress and sarcomeric proteins. Circ Res 112(2):393–405. https://doi.org/10.1161/CIRCRESAHA.111.300496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens TA, Iacovoni JS, Edelman DB, Meech R (2003) Identification of novel binding elements and gene targets for the homeodomain protein BARX2. JBC Pap in Press. https://doi.org/10.1074/jbc.M310259200

  • Sun S, Zhao J, Luo Z, Lin Q, Luo F, Yang T (2020) Systematic evaluation of the physicochemical properties and the volatile flavors of yak meat during chilled and controlled freezing-point storage. J Food Sci Technol 57:1351–1361. https://doi.org/10.1007/s13197-019-04169-8

    Article  CAS  PubMed  Google Scholar 

  • Szigeti A, Hocsak E, Rapolti E, Racz B, Boronkai A, Pozsgai E, Debreceni B, Bognar Z, Bellyei S, Sumegi B, Gallyas F Jr (2010) Facilitation of mitochondrial outer and inner membrane permeabilization and cell death in oxidative stress by a novel Bcl-2 homology 3 domain protein. J Biol Chem 285(3):2140–2151. https://doi.org/10.1074/jbc.M109.015222

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Lao K, Surani MA (2011) Development and applications of single-cell transcriptome analysis. Nat Methods 8(4 Suppl):S6–11. https://doi.org/10.1038/nmeth.1557

  • Tizioto PC, Decker JE, Taylor JF, Schnabel RD, Mudadu MA, Silva FL, Mourão GB, Coutinho LL, Tholon P, Sonstegard TS, Rosa AN, Alencar MM, Tullio RR, MedeirosS R, Nassu RT, Feijó GLD, Silva LOC, Torres RA, Siqueira F, Higa RH, Regitano LCA (2013) Genome scan for meat quality traits in Nelore beef cattle. Physiol Genomics 45:1012–1020

    Article  CAS  Google Scholar 

  • Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, Oliveira PSN, Souza MM, Mourão GB, Tullio RR, Chaves AS, Lanna DPD, Zerlotini-Neto A, Mudadu MA, Taylor JF, Regitano LCA (2015) Global liver gene expression differences in Nellore steers with divergent residual feed intake phenotypes. BMC Genomics 16(242):1–14

    Google Scholar 

  • Tizioto PC, Coutinho LL, Oliveira PSN, Cesar ASM, Diniz WJS, Lima AO, Rocha MI, Decker JE, Schnabel RD, Mourão GB, Tullio RR, Zerlotini A, Taylor JF, Regitano LCA (2016) Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake. Sci Rep 6:39493

    Article  CAS  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  Google Scholar 

  • Troy DJ, Kerry JP (2010) Consumer perception and the role of science in the meat industry. Meat Sci 86:214–226

    Article  CAS  Google Scholar 

  • Uchihashi M, Hoshino A, Okawa Y, Ariyoshi M, Kaimoto S, Tateishi S, Ono K, Yamanaka R, Hato D, Fushimura Y, Honda S, Fukai K, Higuchi Y, Ogata T, Iwai-Kanai E, Matoba S (2017) Cardiac-specific Bdh1 overexpression ameliorates oxidative stress and cardiac remodeling in pressure overload-induced heart failure. Circ Heart Fail 10(12). https://doi.org/10.1161/CIRCHEARTFAILURE.11.004417

  • Van-Marle-Koster E, Visser C (2018) Genetic improvement in South African livestock: can genomics bridge the gap between the developed and developing sectors? Front Genet 9:331. https://doi.org/10.3389/fgene.2018.00331

    Article  PubMed  PubMed Central  Google Scholar 

  • Veiseth E, Shackelford SD, Wheeler TL, Koohmaraie M (2001) Technical note: comparison of myofibril fragmentation index from fresh and frozen pork and lamb longissimus. J Anim Sci 79(4):904–906

    Article  CAS  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 1(38 Suppl):W214–W220

    Article  Google Scholar 

  • White Z, Terrill J, White RB, McMahon C, Sheard P, Grounds MD, Shavlakadze T (2016) Voluntary resistance wheel exercise from mid-life prevents sarcopenia and increases markers of mitochondrial function and autophagy in muscles of old male and female C57BL/6J mice. Skelet Muscle 6(1):45

    Article  Google Scholar 

  • Wu HY, Wang T, Li L, Correia K, Morgan JI (2012) A structural and functional analysis of Nna1 in Purkinje cell degeneration (pcd) mice. FASEB J 26(11):4468–4480. https://doi.org/10.1096/fj.12-205047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie X, Meng Q, Cui Z, Ren L (2012) Effect of cattle breed on meat quality, muscle fiber characteristics, lipid oxidation and fatty acids in China. Asian-Aust J Anim 25(6):824–831

    Article  CAS  Google Scholar 

  • Yang J, Jiang J, Liu X, Wang H, Guo G, Zhang Q, Jiang L (2016) Differential expression of genes in milk of dairy cattle during lactation. Anim Genet 47(2):174–180. https://doi.org/10.1111/age.12394

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zan L, Wang H (2011) Screening candidate genes related to tenderness trait in Qinchuan cattle by genome array. Mol Biol Rep 38(3):2007–2014. https://doi.org/10.1007/s11033-010-0323-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Peñagaricano F, Chen H (2012) Novel transcripts and alternatively spliced genes are associated with early development in bovine embryos. Animal 6(8):1199–1205. https://doi.org/10.1017/S1751731112000092

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Onteru SK, Dittmer KE, Parton K, Blair HT, Rothschild MF, Garrick DJ (2012) A missense mutation in AGTPBP1 was identified in sheep with a lower motor neuron disease. Heredity (Edinb) 109(3):156–162. https://doi.org/10.1038/hdy.2012.23

    Article  CAS  Google Scholar 

  • Zhou M, Zheng S, Li Y, Liu R, Zhang L, Wu Y (2020) Comparative profiling of roots small RNA expression and corresponding gene ontology and pathway analyses for low- and high-cadmium–accumulating genotypes of wheat in response to cadmium stress. Funct Integr Genomics 20:177–190. https://doi.org/10.1007/s10142-019-00710-2

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Malane Magalhães Muniz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

ESM 2

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, M.M., Fonseca, L.F.S., Magalhães, A.F.B. et al. Use of gene expression profile to identify potentially relevant transcripts to myofibrillar fragmentation index trait. Funct Integr Genomics 20, 609–619 (2020). https://doi.org/10.1007/s10142-020-00738-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00738-9

Keywords

Navigation