Skip to main content

Advertisement

Log in

Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Cross-talk between tissues plays key roles in development of organisms; however, there are few researches on cross-talk between tissues in insects. Our previous studies showed that the pupal body weight was elevated after knocking out the fibroin heavy chain gene (BmFib-H), whereas the gene specifically expressed in silk glands of silkworm. Hence, the mutant is a good material for studying the cross-talk between tissues. It is considered that the fat body of silkworm during larval stage is used to store nutrients for pupal development. Herein, comparative proteomic of fat body on the 5th day of fifth instar was performed between BmFib-H gene knock-out Bombyx mori line (FGKO) and its wide-type Dazao. These results revealed that a single gene knock-out in silk gland triggered large-scale metabolic pathways changes in fat body. The levels of proteins involved in glycolysis/gluconeogenesis, pentose phosphate pathway, and glycine-serine biosynthetic pathway were down-regulated in the FGKO fat body. In contrast, the abundances of many proteins participating in protein synthesis, including ribosomal proteins, eukaryotic translation initiation factor, and elongation factor, were up-regulated. Moreover, the concentrations of glycogen and proteins in the FGKO fat body were greatly increased. These findings provided a novel insight into the cross-talk between silk gland and fat body in silkworm, and the presence of cross-talk between silk gland and fat body could regulate the redistribution of nutrients in the FGKO fat body leading to the increase of the pupal weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68:475–478

    Article  CAS  PubMed  Google Scholar 

  • Atkinson DE (1966) Regulation of enzyme activity. Annu Rev Biochem 35:85. doi:10.1146/annurev.bi.35.070166.000505

    Article  CAS  Google Scholar 

  • Barros-Alvarez X, Caceres AJ, Michels PAM, Concepcion JL, Quinones W (2014) The phosphoglycerate kinase isoenzymes have distinct roles in the regulation of carbohydrate metabolism in Trypanosoma cruzi. Exp Parasitol 143:39–47

    Article  CAS  PubMed  Google Scholar 

  • Bismut H, Caron M, Coudray-Lucas C, Capeau J (1995) Glucose contribution to nucleic acid base synthesis in proliferating hepatoma cells: a glycine-biosynthesis-mediated pathway. Biochem J 308(Pt 3):761–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Opin Struct Biol 19:103–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blangy D, Buc H, Monod J (1968) Kinetics of allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol 31:13. doi:10.1016/0022-2836(68)90051-X

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen QM, Liu XY, Zhao P, Sun YH, Zhao XJ, Xiong Y, Xu GW, Xia QY (2015) GC/MS-based metabolomic studies reveal key roles of glycine in regulating silk synthesis in silkworm, Bombyx mori. Insect Biochem Mol 57:41–50. doi:10.1016/j.ibmb.2014.12.007

    Article  CAS  Google Scholar 

  • Chitteti BR, Tan F, Mujahid H, Magee BG, Bridges SM, Peng Z (2008) Comparative analysis of proteome differential regulation during cell dedifferentiation in Arabidopsis. Proteomics 8:4303–4316. doi:10.1002/pmic.200701149

    Article  CAS  PubMed  Google Scholar 

  • Coiras M, Camafeita E, Lopez-Huertas MR, Calvo E, Lopez JA, Alcami J (2008) Application of proteomics technology for analyzing the interactions between host cells and intracellular infectious agents. Proteomics 8:852–873. doi:10.1002/pmic.200700664

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749. doi:10.1016/S0092-8674(03)00713-X

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  • Cooper C, Lehninger AL (1957a) Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. IV. Adenosinetriphosphatase activity. J Biol Chem 224:547–560

    CAS  PubMed  Google Scholar 

  • Cooper C, Lehninger AL (1957b) Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. V. The adenosine triphosphate-phosphate exchange reaction. J Biol Chem 224:561–578

    CAS  PubMed  Google Scholar 

  • Cooper C, Tapley DF (1956) The effect of thyroxine and related compounds on oxidative phosphorylation. J Biol Chem 222:341–349

    CAS  PubMed  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi:10.1038/Nbt.1511

    Article  CAS  PubMed  Google Scholar 

  • Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10:1794–1805. doi:10.1021/Pr101065j

    Article  CAS  PubMed  Google Scholar 

  • D’Alessandro A, Amelio I, Berkers CR, Antonov A, Vousden KH, Melino G, Zolla L (2014) Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5:7722–7733

    PubMed Central  PubMed  Google Scholar 

  • de la Tour CB, Passot FM, Toueille M, Mirabella B, Guerin P, Blanchard L, Servant P, de Groot A, Sommer S, Armengaud J (2013) Comparative proteomics reveals key proteins recruited at the nucleoid of Deinococcus after irradiation-induced DNA damage. Proteomics 13:3457–3469. doi:10.1002/pmic.201300249

    Article  CAS  PubMed  Google Scholar 

  • Devlin TM, Lehninger AL (1956) Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. II. The span beta-hydroxybutyrate to cytochrome c. J Biol Chem 219:507–518

    CAS  PubMed  Google Scholar 

  • Dong ZM, Zhao P, Wang C, Zhang Y, Chen JP, Wang X, Lin Y, Xia QY (2013) Comparative proteomics reveal diverse functions and dynamic changes of Bombyx mori silk proteins spun from different development stages. J Proteome Res 12:5213–5222. doi:10.1021/Pr4005772

    Article  CAS  PubMed  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7:254–261

    Article  CAS  PubMed  Google Scholar 

  • Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, Milkereit P (2005) Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 20:263–275

    Article  CAS  PubMed  Google Scholar 

  • Gamo T, Inokuchi T, Laufer H (1977) Polypeptides of fibroin and sericin secreted from different sections of silk gland in Bombyx mori. Insect Biochem 7:285–295

    Article  CAS  Google Scholar 

  • Horecker BL (1976) The biochemistry of sugars. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung Beiheft 15:1–21

    CAS  PubMed  Google Scholar 

  • Hoshizaki DK (2005) 2.9—Fat-cell development. In: Gilbert LI (ed) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 315–345

    Chapter  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528. doi:10.1074/jbc.M006897200

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal DK, Ray D, Choudhary MK, Subba P, Kumar A, Verma J, Kumar R, Datta A, Chakraborty S, Chakraborty N (2013) Comparative proteomics of dehydration response in the rice nucleus: new insights into the molecular basis of genotype-specific adaptation. Proteomics 13:3478–3497. doi:10.1002/pmic.201300284

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Indrasith LS, Yamashita O (1986) Characterization of vitellin, egg-specific protein and 30 kDa protein from Bombyx eggs, and their fates during oogenesis and embryogenesis. Biochim Biophys Acta 882:427–436

    Article  Google Scholar 

  • Julien E, Coulon-Bublex M, Garel A, Royer C, Chavancy G, Prudhomme JC, Couble P (2005) 2.11—Silk gland development and regulation of silk protein genes. In: Gilbert LI (ed) Comprehensive molecular insect science. Elsevier, Amsterdam, pp 369–384

    Chapter  Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704. doi:10.1146/annurev.biochem.73.030403.080419

    Article  CAS  PubMed  Google Scholar 

  • Lewin B (2008) Protein synthesis. In: Benjamin Lewin LC, Vishwanath R, Lingappa GP (eds) Genes nine. Jones and Bartlett, Sudbury, MA, pp 151–189

    Google Scholar 

  • Liu Y, Liu HH, Liu SM, Wang S, Jiang RJ, Li S (2009) Hormonal and nutritional regulation of insect fat body development and function. Arch Insect Biochem 71:16–30. doi:10.1002/Arch.20290

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583. doi:10.1038/nrc3557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1964) Relationships between substrates + enzymes of glycolysis in brain. J Biol Chem 239:31

    CAS  PubMed  Google Scholar 

  • Luber CA, Cox J, Lauterbach H, Fancke B, Selbach M, Tschopp J, Akira S, Wiegand M, Hochrein H, O’Keeffe M, Mann M (2010) Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32:279–289. doi:10.1016/j.immuni.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1958) The silk fibroins. Adv Protein Chem 13:107–242. doi:10.1016/S0065-3233(08)60599-9

    Article  CAS  PubMed  Google Scholar 

  • Lucas F, Shaw JTB, Smith SG (1960) Comparative studies of fibroins. 1. Amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 2:339–349

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Shi R, Wang X, Liu Y, Chang J, Gao J, Lu W, Zhang J, Zhao P, Xia Q (2014) Genome editing of BmFib-H gene provides an empty Bombyx mori silk gland for a highly efficient bioreactor. Sci Rep 4:6867. doi:10.1038/srep06867

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meldoles M (1971) Effects of 3,3′,5-triiodo-L-thyronine administration on Embden-Meyerhof pathway in kidney cortex of rat. Eur J Biochem 22:27. doi:10.1111/j.1432-1033.1971.tb01510.x

    Article  Google Scholar 

  • Newman JD, Armstrong JM (1978) On the activities of glycogen phosphorylase and glycogen synthase in the liver of the rat. Biochim Biophys Acta 544:225–233

    Article  CAS  PubMed  Google Scholar 

  • Satake S, Kawabe Y, Mizoguchi A (2000) Carbohydrate metabolism during starvation in the silkworm Bombyx mori. Arch Insect Biochem 44:90–98. doi:10.1002/1520-6327(200006)44:2<90::Aid-Arch4>3.0.Co;2-0

    Article  CAS  Google Scholar 

  • Schering B, Reinacher M, Schoner W (1986) Localization and role of pyruvate-kinase isoenzymes in the regulation of carbohydrate-metabolism and pyruvate recycling in rat-kidney cortex. Biochim Biophys Acta 881:62–71

    Article  CAS  PubMed  Google Scholar 

  • Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–342. doi:10.1038/Nature10098

    Article  PubMed  Google Scholar 

  • Scrutton MC, Utter MF (1968) Regulation of glycolysis and gluconeogenesis in animal tissues. Annu Rev Biochem 37:249. doi:10.1146/annurev.bi.37.070168.001341

    Article  CAS  Google Scholar 

  • Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, Glickman MH, Chang EC, Wolf DA (2009) The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 36:141–152. doi:10.1016/j.molcel.2009.09.026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tashiro Y, Morimoto T, Matsuura S, Nagata S (1968) Studies on the posterior silk gland of the silkworm, Bombyx mori. I. Growth of posterior silk gland cells and biosynthesis of fibroin during the fifth larval instar. J Cell Biol 38:574–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian L, Guo EE, Wang S, Liu SM, Jiang RJ, Cao Y, Ling EJ, Li S (2010) Developmental regulation of glycolysis by 20-hydroxyecdysone and juvenile hormone in fat body tissues of the silkworm, Bombyx mori. J Mol Cell Biol 2:255–263. doi:10.1093/Jmcb/Mjq020

    Article  CAS  PubMed  Google Scholar 

  • Tojo S, Nagata M, Kobayashi M (1980) Storage proteins in the silkworm, Bombyx mori. Insect Biochem 10:289–303. doi:10.1016/0020-1790(80)90024-4

    Article  CAS  Google Scholar 

  • Wang SH, You ZY, Ye LP, Che J, Qian Q, Nanjo Y, Komatsu S, Zhong BX (2014) Quantitative proteomic and transcriptomic analyses of molecular mechanisms associated with low silk production in silkworm Bombyx mori. J Proteome Res 13:735–751. doi:10.1021/pr4008333

    Article  CAS  PubMed  Google Scholar 

  • Wilson DN, Nierhaus KH (2007) The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 42:187–219. doi:10.1080/10409230701360843

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362. doi:10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  • Wyatt GR (1967) The biochemistry of sugars and polysaccharides in insects. Adv Insect Physiol 4:287–360. doi:10.1016/S0065-2806(08)60210-6

    Article  CAS  Google Scholar 

  • Xu WH, Lu YX, Denlinger DL (2012) Cross-talk between the fat body and brain regulates insect developmental arrest. Proc Natl Acad Sci U S A 109:14687–14692. doi:10.1073/pnas.1212879109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Y, Dong ZM, Wang DD, Wu Y, Song QR, Gu PM, Zhao P, Xia QY (2014) Proteomics of larval hemolymph in Bombyx mori reveals various nutrient-storage and immunity-related proteins. Amino Acids 46:1021–1031. doi:10.1007/s00726-014-1665-7

    Article  CAS  PubMed  Google Scholar 

  • Zorca SM, Zorca CE (2011) The legacy of a founding father of modern cell biology: George Emil Palade (1912–2008). Yale J Biol Med 84:113–116

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Hi-Tech Research and Development Program of China (No.2011AA100306), and the National Natural Science Foundation of China (No. 31402142, No. 31172157).

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(TIFF 307 kb)

ESM 2

(XLSX 2734 kb)

ESM 3

(XLSX 987 kb)

ESM 4

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Ma, Z., Wang, X. et al. Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 15, 611–637 (2015). https://doi.org/10.1007/s10142-015-0461-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-015-0461-0

Keywords

Navigation