Skip to main content
Log in

Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Three alternating conjugated polymers, namely PFTP, PCzTP, and PSiTP, which combine a thieno[3,4-b]pyrazine (TP) unit with different benzene-based donor units such as 9,9-dioctylfluorene, 9-heptadecyl-9H-carbazole and 5,5-dioctyl-5H-dibenzo[b,d]silole, were synthesized in good yield (>85%) and high molecular weight up to Mn=5.82×104via direct arylation polymerization (DArP). All the resultant polymers exhibit moderate bandgap of about 1.80 eV and strong deep red/near-infrared emitting in the solid state. Among them, the PSiTP-based electroluminescence (EL) devices with an architecture of ITO/PEDOT:PSS/PTAA/emitting layer/TPBi/LiF/Al give the best performance with a maximum luminance of 2543 cd/m2 at 478 mA/cm2. This work expands the application scope of high-performance conjugated polymers which can be synthesized by DArP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zampetti, A.; Minotto, A.; Cacialli, F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater. 2019, 29, 1807623.

    Article  Google Scholar 

  2. Ouali, M. I.; Dumur, F. Recent advances on metal-based near-infrared and infrared emitting OLEDs. Molecules 2019, 24, 1412.

    Article  Google Scholar 

  3. Huang, J.; Liu, Q.; Zou, J.; Zhu, X.; Li, A.; Li, J.; Wu, S.; Peng, J.; Cao, Y.; Xia, R.; Bradley, D. D. C.; Roncali, J. Electroluminescence and laser emission of soluble pure red fluorescent molecular glasses based on dithienylbenzothiadiazole. Adv. Funct. Mater. 2009, 19, 2978–2986.

    Article  CAS  Google Scholar 

  4. Qin, W.; Ding, D.; Liu, J.; Yuan, W.; Hu, Y.; Liu, B.; Tang, B. Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv. Funct. Mater. 2012, 22, 771–779.

    Article  CAS  Google Scholar 

  5. Stender, B.; Völker, S. F.; Lambert, C.; Pflaum, J. Optoelectronic processes in squaraine dye-doped OLEDs for emission in the near-infrared. Adv. Mater. 2013, 25, 2943–2947.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, J.; Xu, Z.; Zhou, J.; Hanif, M.; Jiang, Q.; Hu, D.; Zhao, R.; Wang, C.; Liu, L.; Ma, D.; Ma, Y.; Cao, Y. Enhanced π conjugation and donor/acceptor interactions in D-A-D type emitter for highly efficient near-infrared organic light-emitting diodes with an emission peak at 840 nm. Chem. Mater. 2019, 31, 6499–6505.

    Article  CAS  Google Scholar 

  7. Lombeck, F.; Di, D.; Yang, L.; Meraldi, L.; Athanasopoulos, S.; Credgington, D.; Sommer, M.; Friend, R. H. PCDTBT: from polymer photovoltaics to light-emitting diodes by side-chain-controlled luminescence. Macromolecules 2016, 49, 9382–9387.

    Article  CAS  Google Scholar 

  8. Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-based copolymers for polymer light-emitting diodes: pure near-infrared emission via optimized energy and charge transfer. Adv. Opt. Mater. 2016, 4, 2068–2076.

    Article  CAS  Google Scholar 

  9. Sun, M.; Jiang, X.; Liu, W.; Zhu, T.; Huang, F.; Cao, Y. Selenophene and fluorene based narrow band gap copolymers with Eg = 1.41 eV for near infrared polymer light emitting diodes. Syn. Met. 2012, 162, 1406–1410.

    Article  CAS  Google Scholar 

  10. Zhang, Q. T.; Tour, J. M. Alternating donor/acceptor repeat units in polythiophenes. Intramolecular charge transfer for reducing band gaps in fully substituted conjugated polymers. J. Am. Chem. Soc. 1998, 120, 5355–5362.

    Article  CAS  Google Scholar 

  11. Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Highly efficient near-infrared organic light-emitting diode based on a butterfly-shaped donor-acceptor chromophore with strong solid-state fluorescence and a large proportion of radiative exciton. Angew. Chem. Int. Ed. 2014, 53, 2119–2123.

    Article  CAS  Google Scholar 

  12. Ellinger, S.; Graham, K. R.; Shi, P.; Farley, R. T.; Steckler, T. T.; Brookins, R. N.; Taranekar, P.; Mei, J.; Padilha, L. A.; Ensley, T. R.; Hu, H.; Webster, S.; Hagan, D. J.; Stryland, E. W. V.; Schanze, K. S.; Reynolds, J. R. Donor-acceptor-onnor-based π-coujugeted oligomers for nonlinear optics and near-IR emission. Chem. Mater. 2011, 23, 3805–3817.

    Article  CAS  Google Scholar 

  13. Parker, T. C.; Patel, D. G.; Moudgil, K.; Barlow, S.; Risko, C.; Bredas, J. L.; Reynolds, J. R.; Marder, S. R. Heteroannulated acceptors based on benzothiadiazole. Mater. Horiz. 2015, 2, 22–36.

    Article  CAS  Google Scholar 

  14. Liu, C.; Wang, K.; Gong, X.; Heeger, A. J. Low bandgap semiconducting polymers for polymeric photovoltaics. Chem. Soc. Rev. 2016, 45, 4825–4846.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, Z.; Wang, J. Structures and properties of conjugated donor-acceptor copolymers for solar cell applications. J. Mater. Chem. 2012, 22, 4178–4187.

    Article  CAS  Google Scholar 

  16. Rasmussen, S. C.; Schwiderski, R. L.; Mulholland, M. E. Thieno[3,4-b]pyrazines and their applications to low band gap organic materials. Chem. Commun. 2011, 47, 11394–11410.

    Article  CAS  Google Scholar 

  17. Wen, L.; Nietfeld, J. P.; Amb, C. M.; Rasmussen, S. C. Synthesis and characterization of new 2,3-disubstituted thieno[3,4-b]pyrazines: tunable building blocks for low band gap conjugated materials. J. Org. Chem. 2008, 73, 8529–8536.

    Article  CAS  PubMed  Google Scholar 

  18. Wen, L.; Heth, C. L.; Rasmussen, S. C. Thieno[3,4-b]pyrazine-based oligothiophenes: simple models of donor-acceptor polymeric materials. Phys. Chem. Chem. Phys. 2014, 16, 7231–7240.

    Article  CAS  PubMed  Google Scholar 

  19. Kitamura, C.; Tanaka, S.; Yamashita, Y. Synthesis of new narrow bandgap polymers based on 5,7-di(2-thienyl) thieno[3,4-b]pyrazine and its derivatives. Chem. Commun. 1994, 13, 1585–1586.

    Article  Google Scholar 

  20. Espinet, P.; Echavarren, A. M. The mechanisms of the Stille reaction. Angew. Chem. Int. Ed. 2004, 43, 4704–4734.

    CAS  Google Scholar 

  21. Petersen, M. H.; Hagemann, O.; Nielsen, K. T.; Jrgensen, M.; Krebs, F. C. Low band gap poly-thienopyrazines for solar cells-introducing the 11-thia-9,13-diaza-cyclopenta[b] triphenylenes. Sol. Energy Mater. Sol. Cells 2007, 91, 996–1009.

    Article  CAS  Google Scholar 

  22. Cheng, Y. J.; Luh, T. Y. Synthesizing optoelectronic heteroaromatic conjugated polymers by cross-coupling reactions. J. Organomet. Chem. 2004, 689, 4137–4148.

    Article  CAS  Google Scholar 

  23. Wu, W. C. Liu, C. L.; Chen, W. C. Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications. Polymer 2006, 47, 527–538.

    Article  CAS  Google Scholar 

  24. Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 1995, 95, 2457–2487.

    Article  CAS  Google Scholar 

  25. Abdo, N. I.; EI-Shehawy, A. A.; El-Barbary, A. A.; Lee, J. S. Palladium-catalyzed direct C-H arylation of thieno[3,4-b]pyrazines: synthesis of advanced oligomeric and polymeric materials. Eur. J. Org. Chem. 2012, 2012, 5540–5551.

    Article  CAS  Google Scholar 

  26. Culver, E. W.; Anderson, T. E.; Navarrete, J. T. L.; Delgado, M. C. R.; Rasmussen, S. C. Poly(thieno[3,4-b]pyrazine-alt-2,1,3-bnnzo-thiadiazole)s: a new design paradigm in low band gap polymers. ACS Macro Lett. 2018, 7, 1215–1219.

    Article  CAS  Google Scholar 

  27. Anderson, T. E.; Culver, E. W.; Almyahi, F.; Dastoor, P. C.; Rasmussen, S. C. Poly(2,3-dieexylthirno[3,4-b]pyrazine-alt-2,3-dihexylquinoxaline): processible, low-bandgap, ambipolar-acceptor frameworks via direct arylation polymerization. Synlett 2018, 29, 2542–2546.

    Article  CAS  Google Scholar 

  28. Pouliot, J. R.; Grenier, F.; Blaskovits, J. T.; Beaupré, S.; Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 2016, 116, 14225–14274.

    Article  CAS  PubMed  Google Scholar 

  29. Gobalasingham, N. S.; Thompson, B. C. Direct arylation polymerization: a guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018, 83, 135–201.

    Article  CAS  Google Scholar 

  30. Phan, S.; Luscombe, C. K. Recent advances in the green, sustainable synthesis of semiconducting polymers. Trends Chem. 2019, 1, 670–681.

    Article  CAS  Google Scholar 

  31. Blaskovits, J. T.; Leclerc, M. C-H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 2018, 40, 1800512.

    Article  Google Scholar 

  32. Wakioka, M.; Kitano, Y.; Ozawa, F. A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation. Macromolecules 2013, 46, 370–374.

    Article  CAS  Google Scholar 

  33. Wen, L.; Duck, B. C.; Dastoor, P. C.; Rasmussen, S. C. Poly(2,3-dihexylthieno[3,4-b]pyrazine) via GRIM polymerization: simple preparation of a solution processable, low-band-gap conjugated polymer. Macromolecules 2008, 41, 4576–4578.

    Article  CAS  Google Scholar 

  34. Tamura, H.; Yamanaka, S.; Matsuda, K.; Konishi, T. Synthesis of low bandgap π-conjugated polymer containing thienopyrazine in the polymer backbone. Jpn. J polym. Sci. 1998, 55, 277–283.

    CAS  Google Scholar 

  35. Karsten, B. P.; Viani, L.; Gierschner, J.; Cornil, J.; Janssen, R. A. J. On the origin of small band gaps in alternating thiophenethienopyrazine oligomers. J. Phys Chem. A 2009, 113, 10343–10350.

    Article  CAS  PubMed  Google Scholar 

  36. Wang, E.; Li, C.; Mo, Y.; Zhang, Y.; Ma, G.; Shi, W.; Peng, J.; Yang, W.; Cao, Y. Poly(3,6-silafluorene-co-2,7-fluorene)-based high-efficiency and color-pure blue light-emitting polymers with extremely narrow band-width and high spectral stability. J. Mater. Chem. 2006, 16, 4133–4140.

    Article  CAS  Google Scholar 

  37. Jenekhe, S. A.; Lu, L.; Alam, M. M. New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 2001, 34, 7315–7324.

    Article  CAS  Google Scholar 

  38. Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Conjugated donor-acceptor copolymer semiconductors with large intramolecular charge transfer: synthesis, optical properties, electrochemistry, and field effect carrier mobility of thienopyrazine-based copolymers. Macromolecules 2006, 39, 8712–8719.

    Article  CAS  Google Scholar 

  39. Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.; Cao, Y. High-efficiency saturated red emitting polymers derived from fluorene and naphthoselenadiazole. Macromolecules 2004, 37, 1211–1218.

    Article  CAS  Google Scholar 

  40. Yen, W. C.; Pal, B.; Yang, J. S.; Hung, Y. C.; Lin, S. T.; Chao, C. Y.; Su, W. F. Synthesis and characterization of low bandgap copolymers based on indenofluorene and thiophene derivative. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 5044–5056.

    Article  CAS  Google Scholar 

  41. Khammultri, P.; Kitisriworaphan, W.; Chasing, P.; Namuangruk, S.; Sudyoadsuka, T.; Promarak, V. Efficient white light-emitting polymers from dual thermally activated delayed fluorescence chromophores for non-doped solution processed white electroluminescent devices. Polym. Chem. 2021, 12, 1030–1039.

    Article  CAS  Google Scholar 

  42. Deng, W.; Qin, Y.; Lin, S.; Song, D.; Xu, S.; Wang, H.; Dai, W.; Luo, X. Side chain triphenylamine-based conjugated polymers for the preparation of efficient heterojunction solar cells. J. Mater. Sci. Mater. El. 2019, 30, 2235–2245.

    Article  CAS  Google Scholar 

  43. Zhan, X. W.; Risko, C.; Amy, F.; Chan, C.; Zhao, W.; Barlow, S.; Kahn, A.; Brédas, J. L.; Marder, S. R. Electron affinities of 1,1-diaryl-2,3,4,5-tetraphenylsiloles: direct measurements and comparison with experimental and theoretical estimates. J. Am. Chem. Soc. 2005, 127, 9021–9029.

    Article  CAS  PubMed  Google Scholar 

  44. Udagawa, K.; Sasabe, H.; Cai, C.; Kido, J. Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30%. Adv. Mater. 2014, 26, 5062–5066.

    Article  CAS  PubMed  Google Scholar 

  45. Li, W.; Li, J.; Liu, D.; Li, D.; Wang, F. Cyanopyridine based bipolar host materials for green electrophosphorescence with extremely low turn-on voltages and high power efficiencies. ACS Appl. Mater. Interfaces 2016, 8, 21497–21504.

    Article  CAS  PubMed  Google Scholar 

  46. Beaupré, S.; Boudreault, P. L. T.; Leclerc, M. Solar-energy production and energy-efficient lighting: photovoltaic devices and white-light-emitting diodes using poly(2,7-fluorene), poly(2,7-carbazole), and poly(2,7-dibenzosilole) derivatives. Adv. Mater. 2010, 22, E6–E27.

    Article  PubMed  Google Scholar 

  47. Wang, E. G.; Li, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y. High-efficiency red and green light-emitting polymers based on a novel wide bandgap poly(2,7-silafluorene). J. Mater. Chem. 2008, 18, 797–801.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21604063 and 52173010), and the Program for Prominent Young College Teachers of Tianjin Educational Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2661_MOESM1_ESM.pdf

Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZW., Zhang, Q., Li, CX. et al. Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications. Chin J Polym Sci 40, 138–146 (2022). https://doi.org/10.1007/s10118-022-2661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2661-0

Keywords

Navigation