Skip to main content
Log in

Lightweight, Strong and High Heat-Resistant Poly(lactide acid) Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Poly(lactide acid) (PLA) foams have shown considerable promise as eco-friendly alternatives to nondegradable plastic foams, such as polystyrene (PS) foams. Nevertheless, PLA foam typically suffers from low heat-resistance and poor cellular structure stemming from its inherent slow crystallization rate and low melt strength. In this study, a high-performance PLA foam with well-defined cell morphology, exceptional strength and enhanced heat-resistance was successfully fabricated via a core-back microcellular injection molding (MIM) process. Differential scanning calorimetry (DSC) results revealed that the added hydrazine-based nucleating agent (HNA) significantly increased the crystallization temperature and accelerated the crystallization process of PLA. Remarkably, the addition of a 1.5 wt% of HNA led to a significant reduction in PLA’s cell size, from 43.5 µm to 2.87 µm, and a remarkable increase in cell density, from 1.08×107 cells/cm3 to 2.15×1010 cells/cm3. This enhancement resulted in a final crystallinity of approximately 55.7% for the PLA blend foam, a marked improvement compared to the pure PLA foam. Furthermore, at 1.5 wt% HNA concentration, the tensile strength and tensile toughness of PLA blend foams demonstrated remarkable improvements of 136% and 463%, respectively. Additionally, the Vicat softening temperature of PLA blend foam increased significantly to 134.8 °C, whereas the pure PLA foam exhibited only about 59.7 °C. These findings underscore the potential for the preparation of lightweight injection-molded PLA foam with enhanced toughness and heat-resistance, which offers a viable approach for the production of high-performance PLA foams suitable for large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: wanglong@nimte.ac.cn (L.W.), wgzheng@nimte.ac.cn (W.G.Z.)

References

  1. Doroudiani, S.; Park, C. B.; Kortschot, M. T. Processing and characterization of microcellular foamed high-density polythylene/isotactic polypropylene blends. Polym. Eng. Sci. 1998, 38, 1205–1215.

    Article  Google Scholar 

  2. Yang, J.; Xie, J.; Ji, K.; Wang, X.; Jiao, X.; Xu, Z.; Zhao, P. Microcellular injection molding of polyether-ether-ketone. Polymer 2022, 251, 124866.

    Article  CAS  Google Scholar 

  3. Zhao, J.; Zhao, Q.; Wang, C.; Guo, B.; Park, C. B.; Wang, G. High thermal insulation and compressive strength polypropylene foams fabricated by high-pressure foam injection molding and mold opening of nano-fibrillar composites. Mater. Des. 2017, 131, 1–11.

    Article  CAS  Google Scholar 

  4. Hou, J.; Zhao, G.; Wang, G.; Dong, G.; Xu, J. A novel gas-assisted microcellular injection molding method for preparing lightweight foams with superior surface appearance and enhanced mechanical performance. Mater. Des. 2017, 127, 115–125.

    Article  CAS  Google Scholar 

  5. Wang, G. L.; Zhao, J. C.; Wang, G. Z.; Zhao, H. B.; Lin, J.; Zhao, G. Q.; Park, C. B. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding. Chem. Eng. J. 2020, 390, 124520.

    Article  Google Scholar 

  6. Rhim, J. W.; Park, H. M.; Ha, C. S. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 2013, 38, 1629–1652.

    Article  CAS  Google Scholar 

  7. Ju, Q.; Tang, Z. P.; Shi, H. D.; Zhu, Y. F.; Shen, Y. C.; Wang, T. W. Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing. Int. J. Biol. Macromol. 2022, 219, 175–184.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Y. Y.; Wang, Y.; Zhu, W. B.; Lan, D.; Song, Y. M. Flexible poly(butylene adipate-co-butylene terephthalate) enabled high-performance polylactide/wood fiber biocomposite foam. Ind. Crops Prod. 2023, 204, 117381.

    Article  CAS  Google Scholar 

  9. Wu, M.; Ren, Q.; Zhu, X.; Li, W.; Luo, H.; Wu, F.; Wang, L.; Zheng, W.; Cui, P.; Yi, X. Super toughened blends of poly(lactic acid) and poly(butylene adipate-co-terephthalate) injection-molded foams via enhancing interfacial compatibility and cellular structure. Int. J. Biol. Macromol. 2023, 245, 125490.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, H.; Bian, Y.; Li, Y.; Dong, Q.; Han, C.; Dong, L. Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J. Mater. Chem. A 2014, 2, 8881–8892.

    Article  CAS  Google Scholar 

  11. Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Therriault, D.; Park, C. B. Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams. Eur. Polym. J. 2015, 23, 455–465.

    Article  Google Scholar 

  12. Tang, Y. J.; Wang, Y. Q.; Chen, S. H.; Wang, X. D. Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym. Degrad. Stabil. 2022, 198, 109891.

    Article  CAS  Google Scholar 

  13. Wang, L.; Hikima, Y.; Ishihara, S.; Ohshima, M. Fabrication of lightweight microcellular foams in injection-molded polypropylene using the synergy of long-chain branches and crystal nucleating agents. Polymer 2017, 128, 119–127.

    Article  CAS  Google Scholar 

  14. Ren, Q.; Wu, M. H.; Wang, L.; Zheng, W. E.; Hikima, Y.; Semba, T.; Ohshima, M. Light and strong poly(lactic acid)/cellulose nanofiber nanocomposite foams with enhanced rheological and crystallization property. J. Supercrit. Fluids 2022, 190, 105758.

    Article  CAS  Google Scholar 

  15. Ren, Q.; Wu, M. H.; Wang, L.; Zheng, W. E.; Hikima, Y.; Semba, T.; Ohshima, M. Cellulose nanofiber reinforced poly(lactic acid) with enhanced rheology, crystallization and foaming ability. Carbohydr. Polym. 2022, 286, 119320.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu, X.; Ren, Q.; Li, W.; Wu, M.; Weng, Z.; Wang, J.; Zheng, W.; Wang, L. In situ nanofibrillar fully-biobased poly(lactic acid)/poly(ethylene 2,5-furandicarboxylate) composites with promoted crystallization kinetics, mechanical properties, and heat resistance. Polym. Degrad. Stabil. 2022, 206, 110172.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Guo, F. M.; Liao, X.; Li, S. J.; Yan, Z. H.; Zou, F. F.; Peng, Q. Y.; Li, G. X. Migri-expansion-ratio PLLA/PDLA/HNT composite foams with good thermally insulating property and enhanced compression performance via supercritical CO2. Int. J. Biol. Macromol. 2023, 236, 123961.

    Article  CAS  PubMed  Google Scholar 

  18. Liao, X.; Nawaby, A. V.; Naguib, H. E. Porous poly(lactic acid) and PLA-nanocomposite structures. J. Appl. Polym. Sci. 2012, 124, 585–594.

    Article  CAS  Google Scholar 

  19. Wu, Y.; Zhang, S.; Han, S. Q.; Yu, K. S.; Wang, L. Y. Regulating cell morphology of poly(lactic acid) foams from microcellular to nanocellular by crystal nucleating agent. Polym. Degrad. Stabil. 2022, 204, 110117.

    Article  CAS  Google Scholar 

  20. Jain, S.; Misra, M.; Mohanty, A. K.; Ghosh, A. K. heermal, mechanical and rheological behavior of poly(lactic acid)/talc composites. J. Polym. Environ. 2012, 20, 1027–1037.

    Article  CAS  Google Scholar 

  21. Piekarska, K.; Sowinski, P.; Piorkowska, E.; Ul Haque, M. M.; Pracella, M. Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Compos. Part A: Appl. Sci. Manuf. 2016, 82, 34–41.

    Article  CAS  Google Scholar 

  22. Girdthep, S.; Limwanich, W.; Punyodom, W. Non-isothermal cold crystallization, melting, and moisture barrier properties of silver-loaded kaolinite filled poly(lactic acid) films. Mater. Chem. Phys. 2022, 276, 125227.

    Article  CAS  Google Scholar 

  23. Ouchiar, S.; Stoclet, G.; Cabaret, C.; Georges, E.; Smith, A.; Martias, C.; Addad, A.; Gloaguen, V. Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Appl. Clay Sci. 2015, 116, 231–240.

    Article  Google Scholar 

  24. Clarkson, C. M.; Azrak, S. M. E.; Schueneman, G. T.; Snyder, J. F.; Youngblood, J. P. Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer. Polymer 2020, 187, 122101.

    Article  CAS  Google Scholar 

  25. Zhang, Y. C.; Duvigneau, J.; Sui, X. F.; Vancso, G. J. Foaming of polylactic acid/cellulose nanocrystal composites: pickering emulsion templating for high-homogeneity filler dispersions. ACS Appl. Polym. Mater. 2022, 4, 111–120.

    Article  CAS  Google Scholar 

  26. Soleimanpour, A.; Khonakdar, H.; Mousavi, S. R.; Hemmati, F.; Arjmand, M.; Arnhold, K.; Reuter, U.; Khonakdar, H. A. Dynamic crystallization kinetics and morphology of carbonaceous nanofillers-reinforced poly(lactic acid) foams. Thermochim. Acta 2022, 716, 179308.

    Article  CAS  Google Scholar 

  27. Kim, S. Y.; Shin, K. S.; Lee, S. H.; Kim, K. W.; Youn, J. R. Unique crystallization behavior of multi-walled carbon nanotube filled poly(lactic acid). Fibers Polym. 2010, 11, 1018–1023.

    Article  CAS  Google Scholar 

  28. Ren, Q.; Li, W.; Cui, S.; Ma, W.; Zhu, X.; Wu, M.; Wang, L.; Zheng, W.; Semba, T.; Ohshima, M. Improved thermal insulation and compressive property of bimodal poly(lactic acid)/cellulose nanocomposite foams. Carbohydr. Polym. 2023, 202, 120419.

    Article  Google Scholar 

  29. Nam, J. Y.; Okamoto, M.; Okamoto, H.; Nakano, M.; Usuki, A.; Matsuda, M. Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 2006, 47, 1340–1347.

    Article  CAS  Google Scholar 

  30. Niu, D.; Shen, T.; Xu, P.; Yu, M.; Liu, T.; Yang, W.; Wang, Z.; Ma, P. Enhanced crystallization, heat resistance and transparency of poly(lactic acid) with self-assembling bis-amide nucleator. Int. J. Biol. Macromol. 2023, 234, 123584.

    Article  CAS  PubMed  Google Scholar 

  31. Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Fu, Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 2014, 55, 6924–6934.

    Article  CAS  Google Scholar 

  32. Gao, X.; Qi, S.; Yang, B.; Su, Y.; Li, J.; Wang, D. Synergistic effect of plasticizer and nucleating agent on crystallization behavior of polylactide during fused filament fabrication. Polymer 2021, 215, 123426.

    Article  CAS  Google Scholar 

  33. Tang, Y. J.; Li, Z. L.; Chen, S. H.; Wang, X. D. The synergistic effect of polytetrafluoroethylene in-situ fibrillation and dibenzoyl sebacate hydrazide on the crystallization and foaming behavior of poly(lactic acid). Int. J. Biol. Macromol. 2022, 221, 523–535.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, X.; Yu, J.; Liang, X.; Huang, Z.; Li, J.; Peng, S. Crystallization behaviors regulations and mechanical performances enhancement approaches of polylactic acid (PLA) biodegradable materials modified by organic nucleating agents. Int. J. Biol. Macromol. 2023, 233, 123581.

    Article  CAS  PubMed  Google Scholar 

  35. Xu, T.; Zhang, A.; Zhao, Y.; Han, Z.; Xue, L. Crystallization kinetics and morphology of biodegradable poly(lactic acid) with a hydrazide nucleating agent. Polym. Test. 2015, 45, 101–106.

    Article  CAS  Google Scholar 

  36. Li, C. H.; Luo, S. S.; Wang, J. F.; Wu, H.; Guo, S. Y.; Zhang, X. Conformational regulation and crystalline manipulation of PLLA through a self-assembly nucleator. Biomacromolecules 2017, 18, 1440–1448.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L.; Ando, M.; Kubota, M.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H. Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos. Part A: Appl. Sci. Manuf. 2017, 98, 166–173.

    Article  CAS  Google Scholar 

  38. Luo, F.; Geng, C.; Wang, K.; Deng, H.; Chen, F.; Fu, Q.; Na, B. New understanding in tuning toughness of β-polypropylene: the role of β-nucleated crystalline morphology. Macromolecules 2009, 42, 9325–9331.

    Article  ADS  CAS  Google Scholar 

  39. Bai, H.; Zhang, W.; Deng, H.; Zhang, Q.; Fu, Q. Control of crystal morphology in poly(l-lactide) by adding nucleating agent. Macromolecules 2011, 44, 1233–1237.

    Article  ADS  CAS  Google Scholar 

  40. Leung, S. N.; Park, C. B.; Xu, D.; Li, H.; Fenton, R. G. Computer simulation of bubble-growth phenomena in foaming. Ind. Eng. Chem. Res. 2006, 45, 7823–7831.

    Article  CAS  Google Scholar 

  41. Wang, C.; Shaayegan, V.; Ataei, M.; Costa, F.; Han, S.; Bussmann, M.; Park, C. B. Accurate theoretical modeling of cell growth by comparing with visualized data in high-pressure foam injection molding. Eur. Polym. J. 2019, 119, 189–199.

    Article  CAS  Google Scholar 

  42. Lin, H.; Chen, Y.; Gao, X. R.; Xu, L.; Lei, J.; Zhong, G. J.; Li, Z. M. Transparent, heat-resistant, ductile, and self-reinforced polylactide through simultaneous formation of nanocrystals and an oriented amorphous phase. Mcoromeleceles 2023, 56, 2454–2464.

    Article  ADS  CAS  Google Scholar 

  43. Ding, W. D.; Jahani, D.; Chang, E.; Alemdar, A.; Park, C. B.; Sain, M. Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos. Part A Appl. Sci. Manuf. 2016, 83, 130–139.

    Article  CAS  Google Scholar 

  44. Péter, T.; Litauszki, K.; Kmetty, Á. Improving the heat deflection temperature of poly(lactic acid) foams by annealing. Polym. Degrad. Stab. 2021, 190, 109646.

    Article  Google Scholar 

  45. Tábi, T.; Hajba, S.; Kovács, J. G. Effect of crystalline forms (a′ and a) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties. Eur. Polym. J. 2016, 82, 232–243.

    Article  Google Scholar 

  46. Chai, J. L.; Wang, G. L.; Zhang, A. M.; Li, S.; Zhao, J. C.; Zhao, G. Q.; Park, C. B. Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 reeet-merit. Compos. Part A Appl. Sci. Manuf. 2022, 155, 106849.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 52003280), the Zhejiang Provincial Natural Science Foundation of China (No. LQ21B040003), the S&T Innovation 2025 Major Special Programme of Ningbo (No. 2021Z052), and the Chinese Academy of Sciences Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Wang or Wen-Ge Zheng.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bing, XH., Ma, WY., Wu, MH. et al. Lightweight, Strong and High Heat-Resistant Poly(lactide acid) Foams via Microcellular Injection Molding with Self-Assembly Nucleating Agent. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3088-6

Keywords

Navigation