Skip to main content
Log in

Production of Functional Materials Derived from Regenerated Silk Fibroin by Utilizing 3D Printing and Biomimetic Enzyme-induced Mineralization

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Critical-sized bone defects, commonly encountered in clinical orthopedic surgery, present a significant challenge. One of the promising solutions is to prepare synthetic bone substitute materials with precise structural control, mechanical compatibility, and enhanced osteogenic induction performance, nevertheless the successful preparation of such materials remains difficult. In this study, a two-step technique, integrating an extrusion-based printing process with biomimetic mineralization induced by alkaline phosphatase (ALP), was developed. Initially, a pre-cured hydrogel of regenerated silk fibroin (RSF) with a small quantity of hydroxypropyl cellulose (HPC) and ALP was prepared through heating the mixed aqueous solution. This pre-cured hydrogel demonstrated thixotropic property and could be directly extruded into predetermined structures through a 3D-printer. Subsequently, the 3D-printed RSF-based materials with ALP underwent biomimetic in situ mineralization in calcium glycerophosphate (Ca-GP) mineralizing solution, utilizing the polymer chains of RSF as templates and ALP as a trigger for cleaving phosphate bonds of Ca-GP. The resulting 3D-printed RSF-mineral composites including hydrogel and sponge possessed adjustable compression modulus of megapascal grade and variable hydroxyapatite content, which could be controlled by manipulating the duration of the mineralization process. Moreover, these 3D-printed RSF-mineral composites demonstrated non-cytotoxicity towards rat bone marrow mesenchymal stem cells. Therefore, they may hold great potential for applications involving the replacement of tissues characterized by osteoinductivity and intricate structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, H.; Liu, Y.; Wang, C.; Zhang, A.; Chen, B.; Han, Q.; Wang, J. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput. Biol. Med. 2021, 130, 104241.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, M.; Matinlinna, J. P.; Tsoi, J. K. H.; Liu, W.; Cui, X.; Lu, W. W.; Pan, H. Recent developments in biomaterials for long-bone segmental defect reconstruction: a narrative overview. J. Orthop. Translat. 2020, 22, 26–33.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. H.; Liu, W.; Zheng, Z. L.; Wei, X.; Shah, N. A.; Lin, H.; Zhao, B. S.; Huang, S. S.; Xu, J. Z.; Li, Z. M. Fabrication of highly anisotropic and interconnected porous scaffolds to promote preosteoblast proliferation for bone tissue engineering. Chinese J. Polym. Sci. 2021, 39, 1191–1199.

    Article  CAS  Google Scholar 

  4. Neovius, E.; Engstrand, T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J. Plast. Reconstr. Aesthet. Surg. 2010, 63, 1615–1623.

    Article  PubMed  Google Scholar 

  5. Lauthe, O.; Soubeyrand, M.; Babinet, A.; Dumaine, V.; Anract, P.; Biau, D. J. The indications and donor-site morbidity of tibial cortical strut autografts in the management of defects in long bones. Bone Joint J. 2018, 100-B, 67–674.

    Article  Google Scholar 

  6. Han, J.; Wu, J.; Xiang, X.; Xie, L.; Chen, R.; Li, L.; Ma, K.; Sun, Q.; Yang, R.; Huang, T.; Tong, L.; Zhu, L.; Wang, H.; Wen, C.; Zhao, Y.; Wang, J. Biodegradable BBG/PCL composite scaffolds fabricated by selective laser sintering for directed regeneration of critical-sized bone defects. Mater. Des. 2023, 225, 111543.

    Article  CAS  Google Scholar 

  7. Stevens, M. M. Biomaterials for bone tissue engineering. Mater. Today 2008, 11, 18–25.

    Article  CAS  Google Scholar 

  8. Kumar, A.; Kargozar, S.; Baino, F.; Han, S. S. Additiee manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review. Front. Mater. 2019, 6, 313.

    Article  ADS  Google Scholar 

  9. Ehret, C.; Aid, R.; Dos Santos, B. P.; Rey, S.; Letourneur, D.; Amedee Vilamitjana, J.; de Mones, E. Bone regeneration in small and large segmental bone defect models after radiotherapy using injectable polymer-based biodegradable materials containing strontium-doped hydroxyapatite particles. Int. J. Mol. Sci. 2023, 24, 5429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hu, J.; Cai, X.; Mo, S. B.; Chen, L.; Shen, X. Y.; Tong, H. Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering. Chinese J. Polym. Sci. 2015, 33, 1661–1671.

    Article  CAS  Google Scholar 

  11. Zhou, H.; Lee, J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011, 7, 2769–2781.

    Article  CAS  PubMed  Google Scholar 

  12. Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug Deliv. Rev. 2008, 60, 184–198.

    Article  CAS  PubMed  Google Scholar 

  13. Trakoolwannachai, V.; Kheolamai, P.; Ummartyotin, S. Characterization of hydroxyapatite from eggshell waste and polycaprolactone (PCL) composite for scaffold material. Compos. B Eng. 2019, 173, 106974.

    Article  CAS  Google Scholar 

  14. Yan, H.; Wang, Z.; Li, L.; Shi, X.; Jia, E.; Ji, Q.; Wang, Y.; Ito, Y.; Wei, Y.; Zhang, P. DOAA-derived electroactive copolymer and IGF-1 immobilized poly(lactic-co-glycolic acid)/hydroxyapatite biodegradable microspheres for synergistic bone repair. Chem. Eng. J. 2021, 416, 129129.

    Article  CAS  Google Scholar 

  15. Abouzeid, R. E.; Khiari, R.; Salama, A.; Diab, M.; Beneventi, D.; Dufresne, A. In situ mineralization of nano-hydroxyapatite on bifunctional cellulose nanofiber/polyvinyl alcohol/sodium alginate hydrogel using 3D printing. Int. J. Biol. Macromol. 2020, 160, 538–547.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, P.; Liu, L.; Pan, J.; Mei, J.; Li, C.; Zheng, Y. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 325–335.

    Article  CAS  PubMed  Google Scholar 

  17. Kaushik, S.; Thungon, P. D.; Goswami, P. Silk fibroin: an emerging biocompatible material for application of enzymes and whole cells in bioelectronics and bioanalytical sciences. ACS Biomater. Sci. Eng. 2020, 6, 4337–4355.

    Article  CAS  PubMed  Google Scholar 

  18. Fang, G.; Huang, Y.; Tang, Y.; Qi, Z.; Yao, J.; Shao, Z.; Chen, X. Insights into silk formation process: correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater. Sci. Eng. 2016, 2, 1992–2000.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, G.; Gu, K.; Shao, Z. The investigation from animal silks to silk protein-based materials. Acta Polymerica Sinica (in Chinese) 2021 52, 16–28.

    CAS  Google Scholar 

  20. Kim, H.; Che, L.; Ha, Y.; Ryu, W. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 40, 324–335.

    Article  CAS  PubMed  Google Scholar 

  21. Mi, R.; Liu, Y.; Chen, X.; Shao, Z. Structure and properties of various hybrids fabricated by silk nanofibrils and nanohydroxyapatite. Nanoscale 2016, 8, 20096–20102.

    Article  CAS  PubMed  Google Scholar 

  22. Yan, Z.; Chen, W.; Jin, W.; Sun, Y.; Cai, J.; Gu, K.; Mi, R.; Chen, N.; Chen, S.; Shao, Z. An interference screw made using a silk fibroin-based bulk material with high content of hydroxyapatite for anterior cruciate ligament reconstruction in a rabbit model. J. Mater. Chem. B 2021, 9, 5352–5364.

    Article  CAS  PubMed  Google Scholar 

  23. Liu, X.; Yuk, H.; Lin, S.; Parada, G. A.; Tang, T. C.; Tham, E.; de la Fuente-Nunez, C.; Lu, T. K.; Zhao, X. 3D printing of living responsive materials and devices. Adv. Mater. 2018, 30, 1704821.

    Article  Google Scholar 

  24. Xin, A.; Su, Y.; Feng, S.; Yan, M.; Yu, K.; Feng, Z.; Hoon Lee, K.; Sun, L.; Wang, Q. Growing living composites with ordered microstructures and exceptional mechanical properties. Adv. Mater. 2021, 33, e2006946.

    Article  PubMed  Google Scholar 

  25. Heveran, C. M.; Williams, S. L.; Qiu, J.; Artier, J.; Hubler, M. H.; Cook, S. M.; Cameron, J. C.; Srubar, W. V. Biomineralization and successive regeneration of engineered living building materials. Matter 2020, 2, 481–494.

    Article  CAS  Google Scholar 

  26. Hoffmann, C.; Zollfrank, C.; Ziegler, G. Enzyme-catalysed synthesis of calcium phosphates. J. Mater. Sci. Mater. Med. 2008, 19, 907–915.

    Article  CAS  PubMed  Google Scholar 

  27. Rauner, N.; Meuris, M.; Zoric, M.; Tiller, J. C. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics. Nature 2017, 543, 407–410.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Douglas, T. E.; Messersmith, P. B.; Chasan, S.; Mikos, A. G.; de Mulder, E. L.; Dickson, G.; Schaubroeck, D.; Balcaen, L.; Vanhaecke, F.; Dubruel, P.; Jasen, A. J.; Leeuwenburgh, S. C. G. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase. Macromol. Biosci. 2012, 12, 1077–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yao, R.; Zhang, B.; Gao, T.; Zhang, N.; Wang, Y.; Meng, G.; He, J.; Wu, F. Dopamine enhances the mechanical and biological properties of enzyme-induced mineralized hydrogels. J. Mater. Chem. B 2020, 8, 9052–9061.

    Article  CAS  Google Scholar 

  30. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013, 16, 496–504.

    Article  CAS  Google Scholar 

  31. Gong, Z.; Huang, L.; Yang, Y.; Chen, X.; Shao, Z. Two distinct beta-sheet fibrils from silk protein. Chem. Commun. 2009, 7506–7508.

  32. Chen, G.; Liang, X.; Zhang, P.; Lin, S.; Cai, C.; Yu, Z.; Liu, J. Bioinspired 3D printing of functional materials by harnessing enzyme-induced biomineralization. Adv. Funct. Mater. 2022, 32, 2113262.

    Article  CAS  Google Scholar 

  33. Gong, Z.; Yang, Y.; Ren, Q.; Chen, X.; Shao, Z. Injectable thixotropic hydrogel comprising regenerated silk fibroin and hydroxypropylcellulose. Soft Matter 2012, 8, 2875–2883.

    Article  ADS  CAS  Google Scholar 

  34. Dong, T.; Mi, R.; Wu, M.; Zhong, N.; Zhao, X.; Chen, X.; Shao, Z. The regenerated silk fibroin hydrogel with designed architecture bioprinted by its microhydrogel. J. Mater. Chem. B 2019, 7, 4328–4337.

    Article  CAS  Google Scholar 

  35. Chen, N.; Zhang, X.; Lyu, J.; Zhao, G.; Gu, K.; Xia, J.; Chen, Z.; Shao, Z. Preparation of a novel regenerated silk fibroin-based hydrogel for extrusion bioprinting. Soft Matter 2022, 18, 7360–7368.

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Samal, S. K.; Dash, M.; Declercq, H. A.; Gheysens, T.; Dendooven, J.; Van Der Voort, P.; Cornelissen, R.; Dubruel, P.; Kaplan, D. L. Enzymatic mineralization of silk scaffolds. Macromol. Biosci. 2014, 14, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  37. Su, D.; Yao, M.; Liu, J.; Zhong, Y.; Chen, X.; Shao, Z. Enhancing Mechanical Properties of Silk Fibroin Hydrogel through Restricting the Growth of beta-Sheet Domains. ACS Appl. Mater. Interfaces 2017, 9, 17489–17498.

    Article  CAS  PubMed  Google Scholar 

  38. Rapacz-Kmita, A.; Paluszkiewicz, C.; Ślósarczyk, A.; Paszkiewicz, Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct. 2005, 744–747, 653–656.

    Article  ADS  Google Scholar 

  39. Chen, X.; Shao, Z.; Marinkovic, N. S.; Miller, L. M.; Zhou, P.; Chance, M. R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 2001, 89, 25–34.

    Article  CAS  PubMed  Google Scholar 

  40. Li, Z.; Zheng, Z.; Yang, Y.; Fang, G.; Yao, J.; Shao, Z.; Chen, X. Robust protein hydrogels from silkworm silk. ACS Sustainable Chem. Eng. 2016, 4, 1500–1506.

    Article  CAS  Google Scholar 

  41. Rehman, I.; Bonfield, W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci. Mater. Med. 1997, 8, 1–4.

    Article  CAS  PubMed  Google Scholar 

  42. Shepherd, D. E.; Seedhom, B. B. The ‘instantaneous’ compressive modulus of human articular cartilage in joints of the lower limb. Rheumatology 1999, 38, 124–132.

    Article  CAS  PubMed  Google Scholar 

  43. Gao, F.; Xu, Z.; Liang, Q.; Li, H.; Peng, L.; Wu, M.; Zhao, X.; Cui, X.; Ruan, C.; Liu, W. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds. Adv. Sci. 2019, 6, 1900867.

    Article  Google Scholar 

  44. Lujerdean, C.; Baci, G. M.; Cucu, A. A.; Dezmirean, D. S. The contribution of silk fibroin in biomedical engineering. Insects 2022, 13, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F. P. The biomedical use of silk: past, present, future. Adv. Healthc. Mater. 2019, 8, e1800465.

    Article  PubMed  Google Scholar 

  46. Da, G.; Ma, Y.; Lin, Q.; Shao, Z. Regenerated silk fibroin hydrogel with laponite/polydopamine composite nanoparticles. Acta Polymerica Sinica (in Chinese) 2023, 54, 95–105.

    CAS  Google Scholar 

  47. Chen, L.; Sun, L.; Liu, W.; Yao, J.; Shao, Z.; Zhao, B.; Chen, X. Longlasting thixotropic natural polymeric hydrogel based on silk nanofibrils. ACS Biomater. Sci. Eng. 2023, 9, 4168–4177.

    Article  CAS  PubMed  Google Scholar 

  48. Saleem, M.; Rasheed, S.; Yougen, C. Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration. Sci. Technol. Adv. Mater. 2020, 21, 242–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bharadwaz, A.; Jayasuriya, A. C. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 110, 110698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, H.; You, R.; Yan, K.; Lu, Z.; Fan, Q.; Li, X.; Wang, D. Silk as templates for hydroxyapatite biomineralization: a comparative study of Bombyx mori and Antheraea pernyi silkworm silks. Int. J. Biol. Macromol. 2020, 164, 2842–2850.

    Article  CAS  PubMed  Google Scholar 

  51. Sotome, S.; Uemura, T.; Kikuchi, M.; Chen, J.; Itoh, S.; Tanaka, J.; Tateishi, T.; Shinomiya, K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater. Sci. Eng. C. 2004, 24, 341–347.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. 21935002). We also sincerely thank Gao Han (Ph.D candidate) at Fudan University for his support in cell experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Zhong Shao.

Ethics declarations

Zheng-Zhong Shao is an editorial board member for Chinese Journal of Polymer Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Electronic Supplementary Information (ESI)

10118_2023_3059_MOESM1_ESM.pdf

Production of Functional Materials Derived from Regenerated Silk Fibroin by Utilizing 3D Printing and Biomimetic Enzyme-induced Mineralization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Luo, FY., Yang, GW. et al. Production of Functional Materials Derived from Regenerated Silk Fibroin by Utilizing 3D Printing and Biomimetic Enzyme-induced Mineralization. Chin J Polym Sci 42, 299–310 (2024). https://doi.org/10.1007/s10118-023-3059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3059-3

Keywords

Navigation