Skip to main content
Log in

Ethylene homopolymerization and copolymerization with 1-hexene and 1-octene catalyzed by titanium(IV) dichloride TADDOLate complex activated with MAO

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis and olefin polymerization behavior of a new TADDOL-based Ti(IV) complex, (4R,5R)-2,2-dimethyl-α,α,α′,α′-tetrakis[bis-(3,5-trifluoromethyl)phenyl]-1,3-dioxolane-4,5-dimethanolato-titanium(IV) dichloride, are described. Upon activation with MAO, this complex polymerized ethylene, producing ultra-high molecular weight linear polyethylene (UHMWPE) with activities up to 4500 kg mol (Ti)−1 [C2H4]−1 h−1 atm−1 and molecular weights up to 3.25 × 106. The optimal temperature for UHMWPE synthesis was 50 °C. This complex is also capable of copolymerizing ethylene with 1-hexene and 1-octene, giving high molecular weight copolymers with α-olefin incorporation up to 7.8%. The copolymers, obtained with a different ratio of comonomers, are statistical, according to the analysis of the 13C NMR spectra. The reaction parameters that influenced the copolymerization behavior, such as comonomer concentration, reaction temperature and [Al]/[Ti] molar ratio, are examined in detail. Furthermore, high catalytic activities up to 12,531 kg mol(Ti)−1 [C2H4]−1 h−1 atm−1 were observed in copolymerization of ethylene and 1-hexene or 1-octene with the 2/MAO catalytic system. The obtained copolymers possess high molecular weights (Mw = 1.4 × 106—ethylene/1-hexene and 1.86 × 106—ethylene/1-octene) with broad MWD (Mw/Mn = 3.04–8.23) and high comonomer incorporation degrees (up to 6.2 mol% of 1-hexene and 7.8 mol% of 1-octene). Depending on the synthesis conditions, it is possible to form both a statistical copolymer and a block copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100:1169. https://doi.org/10.1021/cr9804644

    Article  CAS  PubMed  Google Scholar 

  2. Gibson VC, Spitzmesser SK (2003) Chemistry of the lanthanides using pyrazolylborate ligands. Chem Rev 103:283. https://doi.org/10.1021/cr980461r

    Article  CAS  PubMed  Google Scholar 

  3. Makio H, Kashiwa N, Fujita T (2002) Catalysts for the living insertion polymerization of alkenes: access to new polyolefin architectures using Ziegler–Natta chemistry. Adv Synth Catal 344:1. https://doi.org/10.1002/1615-4169(200207)344:5%3c477:AID-ADSC477%3e3.0.CO;2-6

    Article  Google Scholar 

  4. Makio H, Fujita T (2009) Development and application of FI catalysts for olefin polymerization: Unique catalysis and distinctive polymer formation. Acc Chem Res 42:1532. https://doi.org/10.1021/ar900030a

    Article  CAS  PubMed  Google Scholar 

  5. Lamberti M, Mazzeo M, Pappalardo D, Pellecchia C (2009) Mechanism of stereospecific polymerization of α-olefins by late-transition metal and octahedral group 4 metal catalysts. Coord Chem Rev 253:2082. https://doi.org/10.1016/j.ccr.2009.02.014

    Article  CAS  Google Scholar 

  6. Brylyakov KP (2007) Post-metallocene catalysts for olefin polymerisation. Russ Chem Rev 76:253. https://doi.org/10.1070/RC2007v076n03ABEH003649

    Article  CAS  Google Scholar 

  7. Matsukawa N, Ishii S, Furuyama R, Saito J, Mitani M, Makio H, Tanaka H, Fujjita T (2003) Polyolefin structural control using phenoxy-imine ligated group 4 transition metal complex catalysts. e-Polymers. https://doi.org/10.1515/epoly.2003.3.1.258

    Article  Google Scholar 

  8. Kissin YV, Nowlin TE, Mink RI, Brandolini AJ (2000) A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 33:4599. https://doi.org/10.1021/ma992047e

    Article  CAS  Google Scholar 

  9. Kissin YV, Mink RI, Brandolini AJ, Nowlin TE, Polym J (2009) AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler–Natta, metallocene, and post‐metallocene catalysts. Sci Part A Polym Chem 47:3271. https://doi.org/10.1002/pola.23391

    Article  CAS  Google Scholar 

  10. Ch Gagieva S, Tuskaev VA, Fedyanin IV, Buzin MI, Vasil’ev VG, Nikiforova GG, Afanas’ev ES, Zubkevich SV, Kurmaev DA, Kolosov NA, Mikhaylik ES, Golubev EK, Sizov AI, Bulychev BM (2017) Novel titanium(IV) diolate complexes: synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production. J Organomet Chem 828:89. https://doi.org/10.1016/j.jorganchem.2016.11.026

    Article  CAS  Google Scholar 

  11. Tuskaev VA, Gagieva SCh, Kurmaev DA, Khrustalev VN, Dorovatovskii PV, Mikhaylik ES, Golubev EK, Buzin MI, Zubkevich SV, Nikiforova GG, Vasil’ev VG, Bulychev BM, Magomedov KF (2018) Novel titanium(IV) complexes with 1,2-diolate ligands: synthesis, structure and catalytic activities in ultra-high molecular weight polyethylene production. J Organomet Chem 877:85. https://doi.org/10.1016/j.jorganchem.2018.09.014

    Article  CAS  Google Scholar 

  12. Seebach D, Beck AK, Heckel A (2001) TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew Chem Int Ed 40:92. https://doi.org/10.1002/1521-3773(20010105)40:1%3c92:aid-anie92%3e3.0.co;2-k

    Article  CAS  Google Scholar 

  13. Pellissier H (2008) Use of TADDOLs and their derivatives in asymmetric synthesis. Tetrahedron 64:10279–10317. https://doi.org/10.1016/j.tet.2008.08.029D

    Article  CAS  Google Scholar 

  14. Seebach D, Plattner DA, Beck AK, Wang YM, Hunziker D (1992) On the mechanisms of enantioselective reactions using α,α,α′,α′-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-derived titanates: differences between C2-and C1-symmetrical TADDOLs—facts, implications and generalizations. Helv Chim Acta 75:2171. https://doi.org/10.1002/hlca.19920750704

    Article  CAS  Google Scholar 

  15. Belokon Y, Gagieva S, Sukhova T, Dmitriev AB, Lyssenko KA, Bravaya NM (2005) Titanium(IV) chloride complexes with chiral tetraaryl-1,3-dioxolane-4,5-dimethanol ligands as a new type of catalysts of ethylene polymerization. Russ Chem Bull 54:2348. https://doi.org/10.1007/s11172-006-0121-6

    Article  CAS  Google Scholar 

  16. Rishina LA, Galashina NM, Gagieva SC, Tuskaev VA, Kissin YV (2009) Single-center vs. multi-center post-metallocene catalysts for propylene polymerization. Eur. Polym. J. 45:2951

    Article  Google Scholar 

  17. Rishina LA, Galashina NM, Gagieva SCh, Tuskaev VA, Kissin YV (2011) Vysokomol Soedin Ser B 53:284 (Polym Sci B (Engl Transl) 53:42 (2011))

  18. Rishina LA, Galashina NM, Gagieva SC, Tuskaev VA, Kissin YV (2013) Cocatalyst effect in propylene polymerization reactions with post-metallocene catalysts. Eur Polym J 49:147

    Article  CAS  Google Scholar 

  19. Tuskaev VA, Gagieva SC, Maleev VI, Borissova AO, Solov’ev MV, Starikova ZA, Bulychev BM (2013) Titanium(IV) and zirconium(IV) chloride complexes on the base of chiral tetraaryl-1, 3-dioxolane-4, 5-dimetanol ligands in the polymerization of ethylene: the promoting role of lithium and magnesium chloride. Polymer 54:4455

    Article  CAS  Google Scholar 

  20. Hintermann L, Perseghini M, Beilstein AT (2011) Development of the titanium–TADDOLate-catalyzed asymmetric fluorination of β-ketoesters. J Org Chem 7:1421. https://doi.org/10.3762/bjoc.7.166

    Article  CAS  Google Scholar 

  21. Seebach D, Beck AK, Dahinden R, Hoffmann M, Kuehnle FNM (1996) Croat Chem Acta 69:459

    CAS  Google Scholar 

  22. Lin S, Tagge CD, Waymouth RM, Nele MR, Collins S, Pinto JC (2000) Kinetics of propylene polymerization using bis (2-phenylindenyl) zirconium dichloride/methylaluminoxane. J Am Chem Soc 122:11275

    Article  CAS  Google Scholar 

  23. Carmack M, Kelley CJ (1968) Synthesis of optically active Cleland’s reagent [(–)-1,4-dithio-l-threitol]. J Org Chem 33(5):2171. https://doi.org/10.1021/jo01269a123

    Article  CAS  Google Scholar 

  24. Kurtz SM (2004) The UHMWPE Handbook, “Ultra high molecular weight polyethylene in total joint replacement”. Elsevier, New York, p 397

    Google Scholar 

  25. Hsieh ET, Randall JC (1982) Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 15:1402. https://doi.org/10.1021/ma00233a036

    Article  CAS  Google Scholar 

  26. Randall JC (1989) A review of high resolution liquid 13carbon nuclear magnetic resonance characterizations of ethylene-based polymers. J Macromol Sci Part C Polym Rev 29:201–317. https://doi.org/10.1080/07366578908055172

    Article  Google Scholar 

  27. Nowlin TE, Kissin YV, Wagner KP (1988) High activity Ziegler–Natta catalysts for the preparation of ethylene copolymers. J Polym Sci Polym Chem 26:755. https://doi.org/10.1002/pola.1988.080260307

    Article  CAS  Google Scholar 

  28. Kissin YV (1995) Molecular weight distributions of linear polymers: detailed analysis from GPC data. J Polym Sci Polym Chem 33:227. https://doi.org/10.1002/pola.1995.080330205

    Article  CAS  Google Scholar 

  29. Kurtz MS (2004) Ultra-high molecular weight polyethylene in total joint replacement. In: Kurtz SM (ed) The UHMWPE Handbook. Elsevier, Amsterdam

    Google Scholar 

  30. Michler GH, Seydewitz V, Buschnakowski M, Myasnikowa LP, Ivan’kova EM, Marikhin VA, Boiko YM, Goerlitz SJ (2010) Correlation among powder morphology, compactability, and mechanical properties of consolidated nascent UHMWPE. Appl Polym Sci 118(2):866–875. https://doi.org/10.1002/app.32346

    Article  CAS  Google Scholar 

  31. Solovev MV, Gagieva SCh, Tuskaev VA, Bravaya NM, Gadalova OE, Khrustalev VN, Borissova AO, Bulychev BM (2011) Novel titanium(IV) complexes with 2,4-di-tert-butyl-6-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl) phenol in ethene polymerization. Russ Chem Bull Int Ed 60:2227. https://doi.org/10.1007/s11172-011-0342-1

    Article  CAS  Google Scholar 

  32. Tuskaev VA, Gagieva SCh, Solov’ev MV, Kurmaev DA, Kolosov NA, Fedyanin IV, Bulychev BM (2015) Coordination compounds of titanium(IV) and 2-hydroxymethyl-phenol derivatives: their synthesis, structure and catalytic activity in ethylene and 1-hexene polymerization. J Organomet Chem 797:159. https://doi.org/10.1016/j.jorganchem.2015.08.017

    Article  CAS  Google Scholar 

  33. Chum PS, Swogger KW (2008) Olefin polymer technologies—history and recent progress at The Dow Chemical Company. Prog Polym Sci 33:797. https://doi.org/10.1016/j.progpolymsci.2008.05.003

    Article  CAS  Google Scholar 

  34. Furuyama R, Mitani M, Mohri J, Mori R, Tanaka H, Fujita T (2005) Ethylene/higher α-olefin copolymerization behavior of fluorinated bis (phenoxy–imine) titanium complexes with methylalumoxane: synthesis of new polyethylene-based block copolymers. Macromolecules 38:1546. https://doi.org/10.1021/ma0481104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (Project No. 18-13-00375). The synthesis of UHMWPE was financially supported by the Russian Science Foundation (Project No. 16-13-10502). NMR and elemental analysis were performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Tuskaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagieva, S.C., Tuskaev, V.A., Saracheno, D. et al. Ethylene homopolymerization and copolymerization with 1-hexene and 1-octene catalyzed by titanium(IV) dichloride TADDOLate complex activated with MAO. Polym. Bull. 78, 1967–1979 (2021). https://doi.org/10.1007/s00289-020-03195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03195-3

Keywords

Navigation