Skip to main content
Log in

Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Molecular doping is one of the most important tools to manipulate the electrical properties of conjugated polymers for application in organic optoelectronics. The polymer crystallinity and distribution position of the dopant crucially determine electrical conductivity of the doped polymer. However, in solution-mixed doping, the interplay between polymer and dopant leads to highly structural disorder of polymer and random arrangement of dopant. Here, we propose a strategy to ensure the dopant induced polarons have high charge dissociation and transport by letting the conjugated polymers aggregate in the marginal solvent solution by cooling it from higher temperature to room temperature. We select poly(3-hexylthiophene-2,5-diyl) (P3HT) solution doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) as a model system. P3HT crystallizes in the marginal solvent, such as 1,1,2-trichloroethane (TCE) driven by the favor π-π interaction between planar polymer backbone. The dopant F4TCNQ enters the alkyl side chain region not the π-π stacking region and thus guarantees high crystallinity and the π-π interaction of P3HT. This distribution of F4TCNQ which away from the polymer backbone to ensure higher charge dissociation and transport. Finally, we obtained a high conductivity value of 23 S/cm by doping P3HT with 20% F4TCNQ by using the marginal solvent, which is higher than doping P3HT with a disordered coil conformation in chlorobenzene (CB) of 7 S/cm, which the dopants enter both the alkyl side chain region and the π-π stacking region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jacobs, I. E.; Moule, A. J. Controlling molecular doping in organic semiconductors. Adv. Mater. 2017, 29, 1703063.

    Article  Google Scholar 

  2. Scaccabarozzi, A. D.; Basu, A.; Anies, F.; Liu, J.; Zapata-Arteaga, O.; Warren, R.; Firdaus, Y.; Nugraha, M. I.; Lin, Y. B.; Campoy-Quiles, M.; Koch, N.; Muller, C.; Tsetseris, L.; Heeney, M.; Anthopoulos, T. D. Doping approaches for organic semiconductors. Chem. Rev. 2022, 122, 4420–4492.

    Article  CAS  PubMed  Google Scholar 

  3. Pingel, P.; Neher, D. Comprehensive picture of p-type doping of P3HT with the molecular acceptor F(4)TCNQ. Phys. Rev. B 2013, 87, 115209.

    Article  Google Scholar 

  4. Scholes, D. T.; Hawks, S. A.; Yee, P. Y.; Wu, H.; Lindemuth, J. R.; Tolbert, S. H.; Schwartz, B. J. Overcoming film quality issues for conjugated polymers doped with F(4)TCNQ by solution sequential processing: hall effect, structural, and optical measurements. J. Phys. Chem. Lett. 2015, 6, 4786–4793.

    Article  CAS  PubMed  Google Scholar 

  5. Hynynen, J.; Kiefer, D.; Yu, L.; Kroon, R.; Munir, R.; Amassian, A.; Kemerink, M.; Müller, C. Enhanced electrical conductivity of molecularly p-doped poly(3-hexylthiophene) through understanding the correlation with solid-state order. Macromolecules 2017, 50, 8140–8148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, E.; Peterson, K. A.; Su, G. M.; Chabinyc, M. L. Thermoelectric properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration. Chem. Mater. 2018, 30, 998–1010.

    Article  CAS  Google Scholar 

  7. Untilova, V.; Biskup, T.; Biniek, L.; Vijayakumar, V.; Brinkmann, M. Control of chain alignment and crystallization helps enhance charge conductivities and thermoelectric power factors in sequentially doped P3HT:F-4TCNQ films. Macromolecules 2020, 53, 2441–2453.

    Article  CAS  Google Scholar 

  8. Gao, J.; Niles, E. T.; Grey, J. K. Aggregates promote efficient charge transfer doping of poly(3-hexylthiophene). J. Phys. Chem. Lett. 2013, 4, 2953–2957.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, Y. Y.; Wang, Z. Y.; Yao, Z. F.; Yu, Z. D.; Lu, Y.; Wang, X. Y.; Liu, Y.; Li, Q. Y.; Zou, L.; Wang, J. Y.; Pei, J. Systematic investigation of solution-state aggregation effect on electrical conductivity in doped conjugated polymers. CCS Chem. 2021, 3, 2994–3004.

    Article  CAS  Google Scholar 

  10. Yim, K. H.; Whiting, G. L.; Murphy, C. E.; Halls, J. J. M.; Burroughes, J. H.; Friend, R. H.; Kim, J. S. Controlling electrical properties of conjugated polymers via a solution-based p-type doping. Adv. Mater. 2008, 20, 3319–3324.

    Article  CAS  Google Scholar 

  11. Duong, D. T.; Wang, C. C.; Antono, E.; Toney, M. F.; Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Org. Electron. 2013, 14, 1330–1336.

    Article  CAS  Google Scholar 

  12. Méndez, H.; Heimel, G.; Winkler, S.; Frisch, J.; Opitz, A.; Sauer, K.; Wegner, B.; Oehzelt, M.; Röthel, C.; Duhm, S.; Többens, D.; Koch, N.; Salzmann, I. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 2015, 6, 8560.

    Article  PubMed  Google Scholar 

  13. Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; Roehling, J. D.; Li, J.; Zhang, G. W.; Augustine, M. P.; Mascal, M.; Moule, A. J. Comparison of solution-mixed and sequentially processed P3HT:F4TCNQ films: effect of doping-induced aggregation on film morphology. J. Mater. Chem. C 2016, 4, 3454–3466.

    Article  CAS  Google Scholar 

  14. Hamidi-Sakr, A.; Biniek, L.; Bantignies, J. L.; Maurin, D.; Herrmann, L.; Leclerc, N.; Leveque, P.; Vijayakumar, V.; Zimmermann, N.; Brinkmann, M. A versatile method to fabricate highly in-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: the key role of alkyl side chain layers on the doping mechanism. Adv. Funct. Mater. 2017, 27, 1700173.

    Article  Google Scholar 

  15. Yan, H.; Ma, W. Molecular doping efficiency in organic semiconductors: fundamental principle and promotion strategy. Adv. Funct. Mater. 2022, 32, 2111351.

    Article  CAS  Google Scholar 

  16. Jacobs, I. E.; Cendra, C.; Harrelson, T. F.; Valdez, Z. I. B.; Faller, R.; Salleo, A.; Moule, A. J. Polymorphism controls the degree of charge transfer in a molecularly doped semiconducting polymer. Mater. Horiz. 2018, 5, 655–660.

    Article  CAS  Google Scholar 

  17. Neelamraju, B.; Watts, K. E.; Pemberton, J. E.; Ratcliff, E. L. Correlation of coexistent charge transfer states in F(4)TCNQ-doped P3HT with microstructure. J. Phys. Chem. Lett. 2018, 9, 6871–6877.

    Article  CAS  PubMed  Google Scholar 

  18. Wu, E. C. K.; Salamat, C. Z.; Tolbert, S. H.; Schwartz, B. J. Molecular dynamics study of the thermodynamics of integer charge transfer vs charge-transfer complex formation in doped conjugated polymers. ACS Appl. Mater. Interfaces 2022, 14, 26988–27001.

    Article  CAS  Google Scholar 

  19. Stanfield, D. A.; Wu, Y. T.; Tolbert, S. H.; Schwartz, B. J. Controlling the formation of charge transfer complexes in chemically doped semiconducting polymers. Chem. Mater. 2021, 33, 2343–2356.

    Article  CAS  Google Scholar 

  20. McFarland, F. M.; Ellis, C. M.; Guo, S. The aggregation of poly(3-hexylthiophene) into nanowires: with and without chemical doping. J. Phys. Chem. C 2017, 121, 4740–4746.

    Article  CAS  Google Scholar 

  21. McFarland, F. M.; Bonnette, L. R.; Acres, E. A.; Guo, S. The impact of aggregation on the p-doping kinetics of poly(3-hexylthiophene). J. Mater. Chem. C 2017, 5, 5764–5771.

    Article  CAS  Google Scholar 

  22. Tang, K.; McFarland, F. M.; Travis, S.; Lim, J.; Azoulay, J. D.; Guo, S. Aggregation of P3HT as a preferred pathway for its chemical doping with F-4-TCNQ. Chem. Commun. 2018, 54, 11925–11928.

    Article  CAS  Google Scholar 

  23. Gao, J.; Stein, B. W.; Thomas, A. K.; Garcia, J. A.; Yang, J.; Kirk, M. L.; Grey, J. K. Enhanced charge transfer doping efficiency in Jaggregate poly(3-hexylthiophene) nanofibers. J. Phys. Chem. C 2015, 119, 16396–16402.

    Article  CAS  Google Scholar 

  24. Wang, C. C.; Duong, D. T.; Vandewal, K.; Rivnay, J.; Salleo, A. Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films. Phys. Rev. B 2015, 91, 085205.

    Article  Google Scholar 

  25. Harrelson, T. F.; Cheng, Y. Q. Q.; Li, J.; Jacobs, I. E.; Ramirez-Cuesta, A. J.; Faller, R.; Moule, A. J. Identifying atomic scale structure in undoped/doped semicrystalline P3HT using inelastic neutron scattering. Macromolecules 2017, 50, 2424–2435.

    Article  CAS  Google Scholar 

  26. Chen, L.; Wang, H. Y.; Liu, J. G.; Xing, R. B.; Yu, X. H.; Han, Y. C. Tuning the pi-pi stacking distance and J-aggregation of DPP-based conjugated polymer via introducing insulating polymer. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 838–847.

    Article  CAS  Google Scholar 

  27. Tsoi, W. C.; Spencer, S. J.; Yang, L.; Ballantyne, A. M.; Nicholson, P. G.; Turnbull, A.; Shard, A. G.; Murphy, C. E.; Bradley, D. D. C.; Nelson, J.; Kim, J. S. Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules 2011, 44, 2944–2952.

    Article  CAS  Google Scholar 

  28. Gao, W. Y.; Kahn, A. Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study. Appl. Phys. Lett. 2001, 79, 4040–4042.

    Article  CAS  Google Scholar 

  29. Yoon, S. E.; Kang, Y.; Jeon, G. G.; Jeon, D.; Lee, S. Y.; Ko, S. J.; Kim, T.; Seo, H.; Kim, B. G.; Kim, J. H. Exploring wholly doped conjugated polymer films based on hybrid doping: strategic approach for optimizing electrical conductivity and related thermoelectric properties. Adv. Funct. Mater. 2020, 30, 2004598.

    Article  CAS  Google Scholar 

  30. Muller, L.; Nanova, D.; Glaser, T.; Beck, S.; Pucci, A.; Kast, A. K.; Schroder, R. R.; Mankel, E.; Pingel, P.; Neher, D.; Kowalsky, W.; Lovrincic, R. Charge-transfer-solvent interaction predefines doping efficiency in p-doped P3HT films. Chem. Mater. 2016, 28, 4432–4439.

    Article  Google Scholar 

  31. Duong, D. T.; Phan, H.; Hanifi, D.; Jo, P. S.; Nguyen, T. Q.; Salleo, A. Direct observation of doping sites in temperature-controlled, p-doped P3HT thin films by conducting atomic force microscopy. Adv. Mater. 2014, 26, 6069–6073.

    Article  CAS  PubMed  Google Scholar 

  32. Hase, H.; O’Neill, K.; Frisch, J.; Opitz, A.; Koch, N.; Salzmann, I. Unraveling the microstructure of molecularly doped poly(3-hexylthiophene) by thermally induced dedoping. J. Phys. Chem. C 2018, 122, 25893–25899.

    Article  CAS  Google Scholar 

  33. Aziz, E. E.; Vollmer, A.; Eisebitt, S.; Eberhardt, W.; Pingel, P.; Neher, D.; Koch, N. Localized charge transfer in a molecularly doped conducting polymer. Adv. Mater. 2007, 19, 3257–3260.

    Article  CAS  Google Scholar 

  34. Liao, Z. X.; Wang, S. C.; Gao, C. M.; Wang, L. Combining chemical doping and thermal annealing to optimize the thermoelectric performance of the poly(3-hexylthiophene). Compos. Commun. 2022, 34, 101255.

    Article  Google Scholar 

  35. Zhao, K. F.; Zhang, Q.; Chen, L.; Zhang, T.; Han, Y. C. Nucleation and growth of P(NDI2OD-T2) nanowires via side chain ordering and backbone planarization. Macromolecules 2021, 54, 2143–2154.

    Article  CAS  Google Scholar 

  36. Li, H. X.; Yang, H.; Zhang, L.; Wang, S. C.; Chen, Y.; Zhang, Q.; Zhang, J. D.; Tian, H. K.; Han, Y. C. Optimizing the crystallization behavior and film morphology of donor-acceptor conjugated semiconducting polymers by side-chain-solvent interaction in nonpolar solvents. Macromolecules 2021, 54, 10557–10573.

    Article  CAS  Google Scholar 

  37. Zhao, K.; Xue, L. J.; Liu, J. G.; Gao, X.; Wu, S. P.; Han, Y. C.; Geng, Y. H. A new method to improve poly(3-hexyl thiophene) (P3HT) crystalline behavior: decreasing chains entanglement to promote order-disorder transformation in solution. Langmuir 2010, 26, 471–477.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, R.; Yang, H.; Zhou, K.; Zhang, J. D.; Yu, X. H.; Liu, J. G.; Han, Y. C. Molecular orientation and phase separation by controlling chain segment and molecule movement in P3HT/N2200 blends. Macromolecules 2016, 49, 6987–6996.

    Article  CAS  Google Scholar 

  39. Sun, Y.; Liu, J. G.; Ding, Y.; Han, Y. C. Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chinese J. Polym. Sci. 2013, 31, 1029–1037.

    Article  CAS  Google Scholar 

  40. Barrett, B. J.; Saund, S. S.; Dziatko, R. A.; Clark-Winters, T. L.; Katz, H. E.; Bragg, A. E. Spectroscopic studies of charge-transfer character and photoresponses of F4TCNQ-based donor-acceptor complexes. J. Phys. Chem. C 2020, 124, 9191–9202.

    Article  CAS  Google Scholar 

  41. Li, J.; Zhang, G. W.; Holm, D. M.; Jacobs, I. E.; Yin, B.; Stroeve, P.; Mascal, M.; Moule, A. J. Introducing solubility control for improved organic P-type dopants. Chem. Mater. 2015, 27, 5765–5774.

    Article  CAS  Google Scholar 

  42. Liu, J. G.; Sun, Y.; Zheng, L. D.; Geng, Y. H.; Han, Y. C. Vapor-assisted imprinting to pattern poly(3-hexylthiophene) (P3HT) film with oriented arrangement of nanofibrils and flat-on conformation of P3HT chains. Polymer 2013, 54, 423–430.

    Article  CAS  Google Scholar 

  43. Xu, Y. Z.; Liu, J. G.; Wang, H. Y.; Han, Y. C. Hierarchical network-like structure of poly(3-hexlthiophene) (P3HT) by accelerating the disentanglement of P3HT in a P3HT/PS (polystyrene) blend. RSC Adv. 2013, 3, 17195–17202.

    Article  CAS  Google Scholar 

  44. Zhang, R.; Yan, Y.; Yang, H.; Yu, X. H.; Liu, J. G.; Zhang, J. D.; Han, Y. C. The broken out and confinement phase separation structure evolution with the solution aggregation and relative crystallization degree in P3HT/N2200. Polymer 2018, 138, 49–56.

    Article  CAS  Google Scholar 

  45. Liang, Q. J.; Jiao, X. C.; Yan, Y.; Xie, Z. Y.; Lu, G. H.; Liu, J. G.; Han, Y. C. Separating crystallization process of P3HT and O-IDTBR to construct highly crystalline interpenetrating network with optimized vertical phase separation. Adv. Funct. Mater. 2019, 29, 1807591.

    Article  CAS  Google Scholar 

  46. Patel, S. N.; Glaudell, A. M.; Peterson, K. A.; Thomas, E. M.; O’Hara, K. A.; Lim, E.; Chabinyc, M. L. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 2017, 3, e1700434.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Vijayakumar, V.; Zaborova, E.; Biniek, L.; Zeng, H. Y.; Herrmann, L.; Carvalho, A.; Boyron, O.; Leclerc, N.; Brinkmann, M. Effect of alkyl side chain length on doping kinetics, thermopower, and charge transport properties in highly oriented F(4)TCNQ-Doped PBTTT Films. ACS Appl. Mater. Interfaces 2019, 11, 4942–4953.

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka, H.; Kanahashi, K.; Takekoshi, N.; Mada, H.; Ito, H.; Shimoi, Y.; Ohta, H.; Takenobu, T. Thermoelectric properties of a semicrystalline polymer doped beyond the insulator-to-metal transition by electrolyte gating. Sci. Adv. 2020, 6, eaay8065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou, K.; Liu, J. G.; Zhang, R.; Zhao, Q. Q.; Cao, X. X.; Yu, X. H.; Xing, R. B.; Han, Y. C. The molecular regioregularity induced morphological evolution of polymer blend thin films. Polymer 2016, 86, 105–112.

    Article  CAS  Google Scholar 

  50. Chen, L.; Zhao, K. F.; Chi, S. J.; Liu, J. G.; Yu, X. H.; Han, Y. C. Improving fiber alignment by increasing the planar conformation of isoindigo-based conjugated polymers. Mater. Chem. Front. 2017, 1, 286–293.

    Article  CAS  Google Scholar 

  51. Liu, W.; Müller, L.; Ma, S.; Barlow, S.; Marder, S. R.; Kowalsky, W.; Köhn, A.; Lovrincic, R. Origin of the n-n spacing change upon doping of semiconducting polymers. J. Phys. Chem. C 2018, 122, 27983–27990.

    Article  CAS  Google Scholar 

  52. Chen, W. C.; Xiao, M. J.; Yang, C. P.; Duan, L. R.; Yang, R. Q. Efficient P3HT:PC61BM solar cells employing 1,2,4-trichlorobenzene as the processing additives. Chinese J. Polym. Sci. 2017, 35, 302–308.

    Article  CAS  Google Scholar 

  53. Chu, X.; Kang, J. Q.; Hong, Y.; Zhu, G. D.; Yan, S. K.; Wang, X. Y.; Sun, X. L. The effect of substrate on the properties of non-volatile ferroelectric P(VDF-TrFE)/P3HT Memory Devices. Chinese J. Polym. Sci. 2022, 40, 692–699.

    Article  CAS  Google Scholar 

  54. Qiao, X. L.; Yang, J.; Han, L. H.; Zhang, J. D.; Zhu, M. F. Synergistic effects of solvent vapor assisted spin-coating and thermal annealing on enhancing the carrier mobility of poly(3-hexylthiophene) field-effect transistors. Chinese J. Polym. Sci. 2021, 39, 849–855.

    Article  CAS  Google Scholar 

  55. Zhao, Y. F.; Zou, W. J.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci. 2017, 35, 261–268.

    Article  CAS  Google Scholar 

  56. Xue, W.; Xu, M.; Yu, M. N.; Sun, H. M.; Lin, J. Y.; Jiang, R. C.; Xie, L. H.; Shi, N. E.; Huang, W. Electrospun supramolecular hybrid microfibers from conjugated polymers: color transformation and conductivity evolution. Chinese J. Polym. Sci. 2021, 39, 824–830.

    Article  CAS  Google Scholar 

  57. Liu, Y. X.; Wang, L.; Zhou, K.; Wu, H. B.; Zhou, X. B.; Ma, Z. F.; Guo, S. W.; Ma, W. Subtle alignment of organic semiconductors at the donor/acceptor heterojunction facilitates the photoelectric conversion process. Chinese J. Polym. Sci. 2022, 40, 951–959.

    Article  CAS  Google Scholar 

  58. Chappell, J. S.; Bloch, A. N.; Bryden, W. A.; Maxfield, M.; Poehler, T. O.; Cowan, D. O. Degree of charge-transfer in organic conductors by infrared-absorption spectroscopy. J. Am. Chem. Soc. 1981, 103, 2442–2443.

    Article  CAS  Google Scholar 

  59. Meneghetti, M.; Pecile, C. Charge-transfer organic-crystals-molecular vibrations and spectroscopic effects of electron-molecular vibration coupling of the strong electron-acceptor TCNQF4. J. Chem. Phys. 1986, 84, 4149–4162.

    Article  CAS  Google Scholar 

  60. Haworth, N. L.; Lu, J. Z.; Vo, N.; Le, T. H.; Thompson, C. D.; Bond, A. M.; Martin, L. L. Diagnosis of the redox levels of TCNQF(4) compounds using vibrational spectroscopy. ChemPlusChem 2014, 79, 962–972.

    Article  CAS  Google Scholar 

  61. Ghosh, R.; Pochas, C. M.; Spano, F. C. Polaron delocalization in conjugated polymer films. J. Phys. Chem. C 2016, 120, 11394–11406.

    Article  CAS  Google Scholar 

  62. Scholes, D. T.; Yee, P. Y.; Lindemuth, J. R.; Kang, H.; Onorato, J.; Ghosh, R.; Luscombe, C. K.; Spano, F. C.; Tolbert, S. H.; Schwartz, B. J. The effects of crystallinity on charge transport and the structure of sequentially processed F(4)TCNQ-doped conjugated polymer films. Adv. Funct. Mater. 2017, 27, 1702654.

    Article  Google Scholar 

  63. Ghosh, R.; Chew, A. R.; Onorato, J.; Pakhnyuk, V.; Luscombe, C. K.; Salleo, A.; Spano, F. C. Spectral signatures and spatial coherence of bound and unbound polarons in P3HT films: theory versus experiment. J. Phys. Chem. C 2018, 122, 18048–18060.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51933010). We also thank Beijing Synchrotron Radiation Facility (BSRF) 1W1A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zhang or Yan-Chun Han.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2023_2939_MOESM1_ESM.pdf

Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Li, JH., Wang, SC. et al. Control Aggregation of P3HT in Solution for High Efficiency Doping: Ensuring Structural Order and the Distribution of Dopants. Chin J Polym Sci 41, 811–823 (2023). https://doi.org/10.1007/s10118-023-2939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2939-x

Keywords

Navigation