Skip to main content
Log in

Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Conventional organic solar cell’s (OSC) architectures, including rigid transparent substrate (Glass), conductive electrode (Indium tin oxide, ITO) and small working areas, are widely utilized in organic photovoltaic fields. However, such a structure as well as conventional spin-coating method obviously restrict their industrial application. In this article, we report the deposition of silver nanowires (AgNWs) on the flexible substrate by slot-die printing. The obtained AgNWs films exhibited a high transmittance and a low resistance, and were further used as the transparent conductive electrode of OSCs. A typical conjugated polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophen-2-yl)benzo[c] [1,2,5]thiadiazole)] (PPDT2FBT), was used as the active material to fabricate large-area (7 cm2 solar cells by a slot-die coating process. The power conversion efficiency (PCE) could reach 1.87% initially and further increased to 3.04% by thermal annealing. Compared to the performance of reference cell on ITO substrate, the result indicated that the AgNWs could be developed as an alternative substitute of conductive electrode to fabricate the large-area flexible OSCs by roll-to-roll printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lungenschmied, C., Dennler, G., Neugebauer, H., Sariciftci, S.N., Glatthaar, M., Meyer, T. and Meyer, A., Sol. Energy Mater. Sol. Cells, 2007, 91: 379

    Article  CAS  Google Scholar 

  2. Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2009, 93: 465

    Article  CAS  Google Scholar 

  3. Liu, W., Liu. S., Zawacka, N.K., Andersen, T.R., Cheng, P., Fu, L., Chen, M., Fu, W., Bundgaard, E., Jørgensen, M., Zhan, X., Krebs, F.C. and Chen, H., J. Mater. Chem. A, 2014, 2: 19809

    Article  CAS  Google Scholar 

  4. Espinosa, N., Hösel, M., Jørgensen, M. and Krebs, F.C., Energy Environ. Sci., 2014, 7: 855

    Article  CAS  Google Scholar 

  5. Søndergaard, R.R., Hösel, M. and Krebs, F.C., J. Polym. Sci., Part B: Polym. Phys., 2013, 51: 16

    Article  Google Scholar 

  6. Gevorgyan, S.A., Madsen, M.V., Dam, H.F., Jørgensen, M., Fell, C.J., Anderson, K.F., Duck, B.C., Mescheloff, A., Katz, E.A., Elschner, A., Roesch, R., Hoppe, H., Hermenau, M., Riede, M. and Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2013, 116: 187

    Article  CAS  Google Scholar 

  7. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T.T. and Krebs, F.C., Mater. Today, 2012, 15: 36

    Article  Google Scholar 

  8. Larsen-Olsen, T.T., Andersen, T.R., Andreasen, B., Böttiger, A.P.L., Bundgaard, E., Norrman, K., Andreasen, J.W., Jørgensen, M. and Krebs, F.C., Sol. Energy Mater. Sol. Cells, 2012, 97: 43

    Article  CAS  Google Scholar 

  9. Alstrup, J., Jorgensen, M., Medford, A.J. and Krebs, F.C., ACS Appl. Mater. Interfaces, 2010, 2: 2819

    Article  CAS  Google Scholar 

  10. Liao, X.F., Wang, J., Chen, S.Y., Chen, L. and Chen, Y.W., J. Polym. Sci., 2016, 34: 491

    CAS  Google Scholar 

  11. Qu, J.F., Liu, J., Li, S.D., Xie, Z.Y. and Geng, Y.H., J. Polym. Sci., 2013, 31: 815

    CAS  Google Scholar 

  12. Song, H.Y., Tong, H., Xie, Z.Y., Wang, L.X. and Wang, F.S., J. Polym. Sci., 2013, 31: 1117

    CAS  Google Scholar 

  13. Choi, S., Potscavage, W.J. and Kippelen, B., J. Appl. Phys., 2009, 106: 054507

    Article  Google Scholar 

  14. Xue, J., Uchida, S., Rand, B.P. and Forrest, S.R., Appl. Phys. Lett., 2004, 84: 3013

    Article  CAS  Google Scholar 

  15. Song, M., You, D.S., Lim, K., Park, S., Jung, S., Kim, C.S., Kim, D.H., Kim, D.G., Kim, J.K., Park, J., Kang, Y.C., Heo, J., Jin, S.H., Park, J.H. and Kang, J.W., Adv. Funct. Mater., 2013, 23: 4177

    Article  CAS  Google Scholar 

  16. Selzer, F., Weiss, N., Kneppe, D., Bormann, L., Sachse, C., Gaponik, N., Eychmuller, A., Leo, K. and Muller-Meskamp, L., Nanoscale, 2015, 7: 2777

    Article  CAS  Google Scholar 

  17. Kim, Y., Ryu, T.I., Ok, K.H., Kwak, M.G., Park, S., Park, N.G., Han, C.J., Kim, B.S., Ko, M.J., Son, H.J. and Kim, J.W., Adv. Funct. Mater., 2015, 28:4817

    Google Scholar 

  18. Noh, Y.J., Kim, S.S., Kim, T.W. and Na, S.I., Semicond. Sci. Technol., 2013, 28: 125008

    Article  Google Scholar 

  19. Jin, Y., Deng, D., Cheng, Y., Kong, L. and Xiao, F., Nanoscale, 2014, 6: 4812

    Article  CAS  Google Scholar 

  20. Kim, T., Canlier, A., Kim, G.H., Choi, J., Park, M. and Han, S.M., ACS Appl. Mater. Interfaces, 2013, 5: 788

    Article  CAS  Google Scholar 

  21. Cheong, H.G., Triambulo, R.E., Lee, G.H., Yi, I.S. and Park, J.W., ACS Appl. Mater. Interfaces, 2014, 6: 7846

    Article  CAS  Google Scholar 

  22. Preston, C., Fang, Z., Murray, J., Zhu, H., Dai, J., Munday, J.N. and Hu, L., J. Mater. Chem. C, 2014, 2: 1248

    Article  CAS  Google Scholar 

  23. Lee, S.J., Kim, Y.H., Kim, J.K., Baik, H., Park, J.H., Lee, J., Nam, J., Park, J.H., Lee, T.W., Yi, G.R. and Cho, J.H., Nanoscale, 2014, 6: 11828

    Article  CAS  Google Scholar 

  24. Leem, D.S., Edwards, A., Faist, M., Nelson, J., Bradley, D.D. and De Mello, J.C., Adv. Mater., 2011, 23: 4371

    Article  CAS  Google Scholar 

  25. Hu, L., Kim, H.S., Lee, J.Y., Peumans, P. and Cui, Y., ACS Nano, 2010, 4: 2955

    Article  CAS  Google Scholar 

  26. Lucera, L., Machui, F., Kubis, P., Schmidt, H.D., Adams, J., Strohm, S., Ahmad, T., Forberich, K., Egelhaaf, H.J. and Brabec, C.J., Energy Environ. Sci., 2016, 9: 89

    Article  Google Scholar 

  27. Krebs, F.C., Espinosa, N., Hösel, M., Søndergaard, R.R. and Jørgensen, M., Adv. Mater., 2014, 26: 29

    Article  CAS  Google Scholar 

  28. Zhang, Q., Kan, B., Liu, F., Long, G., Wan, X., Chen, X., Zuo, Y., Ni, W., Zhang, H., Li, M., Hu, Z., Huang, F., Cao, Y., Liang, Z., Zhang, M., Russell, T.P. and Chen, Y., Nat. Photon., 2014, 9: 35

    Article  Google Scholar 

  29. Nguyen, T.L., Choi, H., Ko, S.J., Uddin, M.A., Walker, B., Yum, S., Jeong, J.E., Yun, M.H., Shin, T.J., Hwang, S., Kim, J.Y. and Woo, H.Y., Energy Environ. Sci., 2014, 7: 3040

    Article  CAS  Google Scholar 

  30. Liu, Y., Zhao, J., Li, Z., Mu, C., Ma, W., Hu, H., Jiang, K., Lin, H., Ade, H. and Yan, H., Nat. Commun., 2014, 5: 5293

    Article  CAS  Google Scholar 

  31. You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.C., Gao, J., Li, G. and Yang, Y., Nat. Commun., 2013, 4:1446

    Article  Google Scholar 

  32. Zhang, J., Zhang, Y., Fang, J., Lu, K., Wang, Z., Ma, W. and Wei, Z., J. Am. Chem. Soc., 2015, 137: 8176

    Article  CAS  Google Scholar 

  33. Zheng, Z., Zhang, S., Zhang, J., Qin, Y., Li, W., Yu, R., Wei, Z. and Hou, J., Adv. Mater., 2016, 28: 5133

    Article  CAS  Google Scholar 

  34. Zhang, K., Gao, K., Xia, R., Wu, Z., Sun, C., Cao, J., Qian, L., Li. W, Liu, S., Huang, F., Peng, X., Ding, L., Yip, H.L. and Cao, Y., Adv. Mater., 2016, 28: 4817

    Article  CAS  Google Scholar 

  35. Krebs, F.C., Gevorgyan, S.A., Gholamkhass, B., Holdcroft, S., Schlenker, C., Thompson, M.E., Thompson, B.C., Olson, D., Ginley, D.S., Shaheen, S.E., Alshareef, H.N., Murphy, J.W., Youngblood, W.J., Heston, N.C., Reynolds, J.R., Jia, S., Laird, D., Tuladhar, S.M., Dane, J.G.A., Atienzar, P., Nelson, J., Kroon, J.M., Wienk, M.M., Janssen, R.J.A., Tvingstedt, K., Zhang, F., Andersson, M., Inganäs, O., Lira-Cantu, M., De Bettignies, R., Guillerez, S., Aernouts, T., Cheyns, D., Lutsen, L., Zimmermann, B., Würfel, U., Niggemann, M., Schleiermacher, H.F., Liska, P., Grätzel, M., Lianos, P., Katz, E.A., Lohwasser, W. and Jannon, B., Sol. Energy Mater. Sol. Cells, 2009, 93: 1968

    Article  CAS  Google Scholar 

  36. Krebs, F.C., Tromholt, T. and Jorgensen, M., Nanoscale, 2010, 2: 873

    Article  CAS  Google Scholar 

  37. Langley, D.P., Giusti, G., Lagrange, M., Collins, R., Jiménez, C., Bréchet, Y. and Bellet, D., Sol. Energy Mater. Sol. Cells, 2014, 125: 318

    Article  CAS  Google Scholar 

  38. Dkhil, S.B., Duché, D., Gaceur, M., Thakur, A.K., Aboura, F.B., Escoubas, L., Simon, J.J., Guerrero, A., Bisquert, J., Garcia-Belmonte, G., Bao, Q., Fahlman, M., Videlot-Ackermann, C., Margeat, O. and Ackermann, J., Adv. Energy Mater., 2014, 4: 1400805

    Article  Google Scholar 

  39. Servaites, J.D., Yeganeh, S., Marks, T.J. and Ratner, M.A., Adv. Funct. Mater., 2010, 20: 97

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Lu  (吕琨), Wei Yan  (延卫) or Zhi-xiang Wei  (魏志祥).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21125420 and 21474022) and the Chinese Academy of Sciences.

Invited paper for special issue of “Opto-electronic Functional Polymer”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Yf., Zou, Wj., Li, H. et al. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chin J Polym Sci 35, 261–268 (2017). https://doi.org/10.1007/s10118-017-1875-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1875-z

Keywords

Navigation