Skip to main content
Log in

Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Mixing two or more polymers to produce the “polymer alloy” is the most versatile and economical strategy for developing new polymeric materials. The compatibility between polymer components largely determines the comprehensive performance of polymer blend. More recently, a type of unique surface partitioned materials, Janus particles, has been proposed to act as a novel interfacial compatibilizer for polymer blends. Such Janus particles integrates the amphipathicity of diblock copolymer and interfacial stabilization of nanoparticles, displaying a significant superiority in comparison with molecular compatibilizers for a wide range of polymer blends. In this review, we mainly focus on the compatibilizing effects of Janus nanofillers of various morphologies, including spherical, snowman-like, and two-dimensional nanosheets, on polymer blends. We shed light on the impacts of compatibilization of Janus particles on phase morphologies, mechanical properties, and functionalities of polymer blends. This review could provide a guidance for designing an effective Janus particle compatibilizer to develop high-performance polymer blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cardinale’s, R.; Moldenaers, P., in Morphology development in immiscible polymer blends. Polymer Morphology: Principles, Characterization and Properties, Ed. by Guo, Q., John Wiley & Sons, 2016; Chapter 19, pp. 348–373.

  2. Thomas, S.; Grohens, Y.; Jyotishkumar, P., in Characterization of polymer blends: miscibility, morphology and interfaces, John Wiley & Sons, 2014; Chapter 1, pp. 1–3.

  3. Sinha Ray, S.; Bousmina, M. Compatibilization efficiency of organoclay in an immiscible polycarbonate/poly(methyl methacrylate) blend. Macromol. Rapid Commun. 2005, 26, 450–455.

    Article  Google Scholar 

  4. Utracki, L. A. Compatibilization of polymer blends. Can. J. Chem. Eng. 2002, 80, 1008–1016.

    Article  CAS  Google Scholar 

  5. Elias, L.; Fenouillot, F.; Majesté, J. C.; Alcouffe, P.; Cassagnau, P. Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 2008, 49, 4378–4385.

    Article  CAS  Google Scholar 

  6. Dai, K. H.; Kramer, E. J.; Shull, K. R. Interfacial segregation in two-phase polymer blends with diblock copolymer additives: the effect of homopolymer molecular weight. Macromolecules 1992, 25, 220–225.

    Article  CAS  Google Scholar 

  7. Wang, X. F.; Zhang, Z. X.; Yang, J. H.; Wang, Y.; Zhang, J. H. Largely improved fracture toughness of an immiscible poly(L-lactide)/ethylene-co-vinyl acetate blend achieved by adding carbon nanotubes. RSC Adv. 2015, 5, 69522–69533.

    Article  CAS  Google Scholar 

  8. Liang, F. X.; Zhang, C. L.; Yang, Z. Z. Rational design and synthesis of Janus composites. Adv. Mater. 2014, 26, 6944–6949.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang, S.; Chen, Q.; Tripathy, M.; Luijten, E.; Schweizer, K. S.; Granick, S. Janus particle synthesis and assembly. Adv. Mater. 2010, 22, 1060–1071.

    Article  CAS  PubMed  Google Scholar 

  10. Cardinaels, R., in Compatibilization of polymer blends: micro and nano scale phase morphologies, interphase characterization, and properties, eds. by Ajitha, A. R., Thomas, S., Elsevier, Netherlands, 2020, Chapter 8, p. 253–270.

  11. Hou, Y.; Zhang, G. L.; Tang, X. P.; Si, Y.; Song, X. M.; Liang, F. X.; Yang, Z. Z. Janus nanosheets synchronously strengthen and toughen polymer blends. Macromolecules 2019, 52, 3863–3868.

    Article  CAS  Google Scholar 

  12. Guan, J. P.; Gui, H. G.; Zheng, Y. Y.; You, J. C.; Li, Y. J.; Liang, F. X.; Yang, Z. Z. Stabilizing polymeric interface by Janus nanosheet. Macromol. Rapid Commun. 2020, 41, 2000392.

    Article  CAS  Google Scholar 

  13. Sharifzadeh E. Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of Janus nanoparticles on polymer/polymer interface. Chinese J. Polym. Sci. 2019, 37, 164–177.

    Article  CAS  Google Scholar 

  14. Robeson, L. M. Polymer blends. A comprehensive review, 2007, 641.

  15. Paul, D. R. Polymer Blends. Volume 1 (Vol. 1). Elsevier, 2012.

  16. Paul, D. R.; Barlow, J. W. A binary interaction model for miscibility of copolymers in blends. Polymer 1984, 25, 487–494.

    Article  CAS  Google Scholar 

  17. Djordjevic, M. B.; Porter, R. S. NMR characterization of intermolecular interactions for polymers, IV. Intermolecular interactions of low molecular weight analogues for compatible blends of polystyrene and poly(2,6-dimethyl-1,4-phenylene oxide). Polym. Eng. Sci. 1983, 23, 650–657.

    Article  CAS  Google Scholar 

  18. Tjong, S. C.; Meng, Y. Z. Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile-butadiene-styrene) blends. Eur. Polym. J. 2000, 36, 123–129.

    Article  CAS  Google Scholar 

  19. Macosko, C. W., in Morphology development and control in immiscible polymer blends. In Macromolecular Symposia, Vol. 149, WILEY-VCH Verlag, Weinheim, 2000, p. 171

    Google Scholar 

  20. Pötschke, P.; Paul, D. R. Formation of co-continuous structures in melt-mixed immiscible polymer blends. J. Macromol. Sci.-Polym. Rev 2003, 43, 87–141.

    Article  Google Scholar 

  21. Lyngaae-Jørgensen, J.; Utracki, L. A. in Dual phase continuity in polymer blends. In Makromolekulare Chemie. Macromolecular Symposia, Basel: Hüthig & Wepf Verlag, 1991, p. 189

    Google Scholar 

  22. He, J.; Bu, W.; Zeng, J. Co-phase continuity in immiscible binary polymer blends. Polymer 1997, 38, 6347–6353.

    Article  CAS  Google Scholar 

  23. Li, Y.; Shimizu, H. Novel morphologies of poly(phenylene oxide)(PPO)/polyamide 6 (PA6) blend nanocomposites. Polymer 2004, 45, 7381–7388.

    Article  CAS  Google Scholar 

  24. Metelkin, V. I.; Blekht, V. S. Formation of a continuous phase in heterogeneous mixtures of polymers. Kolloidnyi Zhurnal 1984, 42, 476–480.

    Google Scholar 

  25. Kozlowski, M. The formation of interpenetrating polymer blends. J. Polym. Eng. 1995, 14, 15–40.

    Article  CAS  Google Scholar 

  26. Noolandi, J.; Hong, K. M. Interfacial properties of immiscible homopolymer blends in the presence of block copolymers. Macromolecules 1982, 15, 482–492.

    Article  CAS  Google Scholar 

  27. Zhang, J. B.; Ji, S. X.; Song, J.; Lodge, T. P.; Macosko, C. W. Flow accelerates interfacial coupling reactions. Macromolecules 2010, 43, 7617–7624.

    Article  CAS  Google Scholar 

  28. Koning, C.; Duin, M. V.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23, 707–757.

    Article  CAS  Google Scholar 

  29. Bell, J. R.; Chang, K.; López-Barrón, C. R.; Macosko, C. W.; Morse, D. C. Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture. Macromolecules 2010, 43, 5024–5032.

    Article  CAS  Google Scholar 

  30. Zhao, X. W., Surface modification of carbon nanoparticles and the compatibilization effects on PVDF/PLLA blends, Thesis, Hangzhou Normal University, 2019.

  31. Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and its blends with poly(butylene succinate) (PBS): a brief review. Polymers 2019, 11, 1193.

    Article  PubMed  PubMed Central  Google Scholar 

  32. He, L.; Song, F.; Li, D. F.; Zhao, X.; Wang, X. L.; Wang, Y. Z. Strong and tough polylactic acid based composites enabled by simultaneous reinforcement and interfacial compatibilization of microfibrillated cellulose. ACS Sustain. Chem. Eng. 2020, 8, 1573–1582.

    Article  CAS  Google Scholar 

  33. Chen, G. X.; Kim, H. S.; Kim, E. S.; Yoon, J. S. Compatibilization-like effect of reactive organoclay on the poly(L-lactide)/poly(butylene succinate) blends. Polymer 2005, 46, 11829–11836.

    Article  CAS  Google Scholar 

  34. Wu, W.; Wu, C. K.; Peng, H. Y.; Sun, Q. J.; Zhou, L.; Zhuang, J. Q.; Cao, X. W.; Roy, V. A. L.; Li, R. K. Y. Effect of nitrogen-doped graphene on morphology and properties of immiscible poly(butylene succinate)/polylactide blends. Compos. Pt. B-Eng. 2017, 113, 300–307.

    Article  CAS  Google Scholar 

  35. Tan, L. C.; He, Y.; Qu, J. P. Structure and properties of Polylactide/poly(butylene succinate)/organically Modified Montmorillonite nanocomposites with high-efficiency intercalation and exfoliation effect manufactured via volume pulsating elongation flow. Polymer 2019, 180, 121656.

    Article  CAS  Google Scholar 

  36. Wang, X. M.; Zhuang, Y. G.; Dong, L. S. Study of carbon black-filled poly(butylene succinate)/polylactide blend. J. Appl. Polym. Sci. 2012, 126, 1876–1884.

    Article  CAS  Google Scholar 

  37. Zou, Z. M.; Sun, Z. Y.; An, L. J. Studies on droplet size distributions during coalescence in immiscible polymer blends filled with silica nanoparticles. Chinese J. Polym. Sci. 2014, 32, 255–267.

    Article  CAS  Google Scholar 

  38. Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T. Compatibilizing effect of block copolymers added to the polymer/polymer interface. Macromolecules 1989, 22, 1449–1453.

    Article  CAS  Google Scholar 

  39. Adedeji, A.; Lyu, S.; Macosko, C. W. Block copolymers in homopolymer blends: interface vs micelles. Macromolecules 2001, 34, 8663–8668.

    Article  CAS  Google Scholar 

  40. Ginzburg, V. V. Influence of nanoparticles on miscibility of polymer blends. A simple theory. Macromolecules 2005, 38, 2362–2367.

    Article  CAS  Google Scholar 

  41. Virgilio, N.; Favis, B. D. Self-assembly of Janus composite droplets at the interface in quaternary immiscible polymer blends. Macromolecules 2011, 44, 5850–5856.

    Article  CAS  Google Scholar 

  42. Walther, A.; Matussek, K.; Müller, A. H. E. Engineering nanostructured polymer blends with controlled nanoparticle location using Janus particles. ACS Nano 2008, 2, 1167–1178.

    Article  CAS  PubMed  Google Scholar 

  43. Walther, A.; Muller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194–5261.

    Article  CAS  PubMed  Google Scholar 

  44. Erhardt, R.; Böker, A.; Zettl, H.; Kaya, H.; Pyckhout-Hintzen, W.; Krausch, G.; Abetz V.; Müller, A. H. E. Janus micelles. Macromolecules 2001, 34, 1069–1075.

    Article  CAS  Google Scholar 

  45. Bayer, U.; Stadler, R. Synthesis and properties of amphiphilic “dumbbell”-shaped grafted block copolymers, 1. Anionic synthesis via a polyfunctional initiator. Macromol. Chem. Phys. 1994, 195, 2709–2722.

    Article  CAS  Google Scholar 

  46. Förster, S.; Antonietti, M. Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv. Mater. 1998, 10, 195–217.

    Article  Google Scholar 

  47. Stewart, S.; Liu, G. Hollow nanospheres from polyisoprene-block-poly (2-cinnamoylethyl methacrylate)-block-poly(tert-butyl acrylate). Chem. Mater. 1999, 11, 1048–1054.

    Article  CAS  Google Scholar 

  48. Bieringer, R.; Abetz, V.; Müller, A. H. E. Triblock copolyampholytes from 5-(N,N-dimethylamino) isoprene, styrene, and methacrylic acid: synthesis and solution properties. Eur. Phys. J. E 2001, 5, 5–12.

    Article  CAS  Google Scholar 

  49. Sun, Y. J.; Liang, F. X.; Qu, X. Z.; Wang, Q.; Yang, Z. Z. Robust reactive Janus composite particles of snowman shape. Macromolecules 2015, 48, 2715–2722.

    Article  CAS  Google Scholar 

  50. Yu, X. T.; Sun, Y. J.; Liang, F. X.; Jiang, B. Y.; Yang, Z. Z. Triblock Janus particles by seeded emulsion polymerization. Macromolecules 2019, 52, 96–102.

    Article  CAS  Google Scholar 

  51. Liang, F. X.; Shen, K.; Qu, X. Z.; Zhang, C. L.; Wang, Q., Li, J. G.; Yang, Z. Z. Inorganic Janus nanosheets. Angew. Chem. Int. Edit. 2011, 50, 2379–2382.

    Article  CAS  Google Scholar 

  52. Chen, Y.; Liang, F. X.; Yang, H. L.; Zhang, C. L.; Wang, Q.; Qu, X. Z.; Yang, Z. Z. Janus nanosheets of polymer-inorganic layered composites. Macromolecules 2012, 45, 1460–1467.

    Article  CAS  Google Scholar 

  53. Liu, Y.; Abetz, V.; Müller, A. H. Janus cylinders. Macromolecules 2003, 36, 7894–7898.

    Article  CAS  Google Scholar 

  54. Xia, Y.; Olsen, B. D.; Kornfield, J. A.; Grubbs, R. H. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. J. Am. Chem. Soc. 2009, 131, 18525–18532.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, X.; Wang, H.; Fu, Z.; Li, Y. Enhanced interfacial adhesion by reactive carbon nanotubes: new route to high-performance immiscible polymer blend nanocomposites with simultaneously enhanced toughness, tensile strength, and electrical conductivity. ACS Appl. Mater. Interfaces 2018, 10, 8411–8416.

    Article  CAS  PubMed  Google Scholar 

  56. Fu, Z.; Wang, H.; Zhao, X.; Li, X.; Gu, X.; Li, Y. Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. J. Mater. Chem. A 2019, 7, 4903–4912.

    Article  CAS  Google Scholar 

  57. Li, X.; Fu, Z.; Gu, X.; Liu, H.; Wang, H.; Li, Y. Interfacially located nanoparticles: Barren nanorods versus polymer grafted nanorods. Compos. Pt. B-Eng. 2020, 198, 108153.

    Article  CAS  Google Scholar 

  58. Bryson, K. C.; Löbling, T. I.; Müller, A. H. E.; Russell, T. P.; Hayward, R. C. Using Janus nanoparticles to trap polymer blend morphologies during solvent-evaporation-induced demixing. Macromolecules 2015, 48, 4220–4227.

    Article  CAS  Google Scholar 

  59. Bahrami, R.; Löbling, T. I.; Gröschel, A. H.; Schmalz, H.; Muller, A. H. E.; Altstädt, V. The impact of Janus nanoparticles on the compatibilization of immiscible polymer blends under technologically relevant conditions. ACS Nano 2014, 8, 10048–10056.

    Article  CAS  PubMed  Google Scholar 

  60. Wang, H. T.; Fu, Z. A.; Zhao, X. W.; Li, Y. J.; Li, J. Y. Reactive nanoparticles compatibilized immiscible polymer blends: synthesis of reactive SiO2 with long poly(methyl methacrylate) chains and the in situ formation of Janus SiO2 nanoparticles anchored exclusively at the interface. ACS Appl. Mater. Interfaces 2017, 9, 14358–14370.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, H.; Dong, W.; Li, Y. Compatibilization of immiscible polymer blends using in situ formed Janus nanomicelles by reactive blending. ACS Macro Lett. 2015, 4, 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  62. Wang, H. T.; Fu, Z. A.; Dong, W. Y.; Li, Y. J.; Li, J. Y. Formation of interfacial Janus nanomicelles by reactive blending and their compatibilization effects on immiscible polymer blends. J. Phys. Chem. B 2016, 120, 9240–9252.

    Article  CAS  PubMed  Google Scholar 

  63. Fu, Z.; Wang, H.; Zhao, X.; Horiuchi, S.; Li, Y. Immiscible polymer blends compatibilized with reactive hybrid nanoparticles: Morphologies and properties. Polymer 2017, 132, 353–361.

    Article  CAS  Google Scholar 

  64. Nie, H.; Zhang, C.; Liu, Y.; He, A. Synthesis of Janus rubber hybrid particles and interfacial behavior. Macromolecules 2016, 49, 2238–2244.

    Article  CAS  Google Scholar 

  65. Xu, W.; Chen, J.; Chen, S.; Chen, Q.; Lin, J.; Liu, H. Study on the compatibilizing effect of Janus particles on liquid isoprene rubber/epoxy resin composite materials. Ind. Eng. Chem. Res. 2017, 56, 14060–14068.

    Article  CAS  Google Scholar 

  66. Cheng, W.; Xu, Z.; Chen, S.; Ai, J.; Lin, J.; Lin, J.; Chen, Q. Compatibilization behavior of double spherical TETA-SiO2@PDVB Janus particles anchored at the phase interface of acrylic resin/epoxy resin (AR/EP) polymer blends. ACS omega 2019, 4, 17607–17614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Parpaite, T.; Otazaghine, B.; Caro, A. S.; Taguet, A.; Sonnier, R.; Lopez-Cuesta, J. M. Janus hybrid silica/polymer nanoparticles as effective compatibilizing agents for polystyrene/polyamide-6 melted blends. Polymer 2016, 90, 34–44.

    Article  CAS  Google Scholar 

  68. Caro, A. S.; Parpaite, T.; Otazaghine, B.; Taguet, A.; Lopez-Cuesta, J. M. Viscoelastic properties of polystyrene/polyamide-6 blend compatibilized with silica/polystyrene Janus hybrid nanoparticles. J. Rheol. 2017, 61, 305–310.

    Article  CAS  Google Scholar 

  69. You, W.; Yu, W. Onset reduction and stabilization of cocontinuous morphology in immiscible polymer blends by snowmanlike Janus nanoparticles. Langmuir 2018, 34, 11092–11100.

    Article  CAS  PubMed  Google Scholar 

  70. He, H.; Liang, F. Engineering polymer blends with controllable interfacial location of Janus particles as compatibilizers. Chem. Mater. 2022, 34, 3806–3818.

    Article  CAS  Google Scholar 

  71. Nie, H.; Liang, X.; He, A. Enthalpy-enhanced Janus nanosheets for trapping nonequilibrium morphology of immiscible polymer blends. Macromolecules 2018, 51, 2615–2620.

    Article  CAS  Google Scholar 

  72. Han, X.; Liang, X.; Cai, L.; He, A.; Nie, H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym. Chem. 2019, 10, 5184–5190.

    Article  CAS  Google Scholar 

  73. Weiss, S.; Hirsemann, D.; Biersack, B.; Ziadeh, M.; Müller, A. H. E.; Breu, J. Hybrid Janus particles based on polymer-modified kaolinite. Polymer 2013, 54, 1388–1396.

    Article  CAS  Google Scholar 

  74. Hu, L.; Han, Y.; Rong, C.; Wang, X.; Wang, H.; Li, Y. Interfacial engineering with rigid nanoplatelets in immiscible polymer blends: interface strengthening and interfacial curvature controlling. ACS Appl. Mater. Interfaces 2022, 14, 11016–11027.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, M.; Jiang, C.; Wu, Q.; Zhang, G.; Liang, F.; Yang, Z. Poly(lactic acid)/poly(butylene succinate) (PLA/PBS) layered composite gas barrier membranes by anisotropic Janus nanosheets compatibilizers. ACS Macro Lett. 2022, 11, 657–662.

    Article  CAS  PubMed  Google Scholar 

  76. Huang, M.; Li, Z.; Guo, H. The effect of Janus nanospheres on the phase separation of immiscible polymer blends via dissipative particle dynamics simulations. Soft Matter 2012, 8, 6834–6845.

    Article  CAS  Google Scholar 

  77. Huang, M.; Guo, H. The intriguing ordering and compatibilizing performance of Janus nanoparticles with various shapes and different dividing surface designs in immiscible polymer blends. Soft Matter 2013, 9, 7356–7368.

    Article  CAS  Google Scholar 

  78. Zhou, Y.; Huang, M.; Lu, T.; Guo, H. Nanorods with different surface properties in directing the compatibilization behavior and the morphological transition of immiscible polymer blends in both shear and shear-free conditions. Macromolecules 2018, 51, 3135–3148.

    Article  CAS  Google Scholar 

  79. Zhou, C.; Luo, S. K.; Sun, Y.; Zhou, Y.; Qian, W. Dissipative particle dynamics studies on the interfacial tension of A/B homopolymer blends and the effect of Janus nanorods. J. Appl. Polym. Sci. 2016, 133.

  80. Estridge, C. E.; Jayaraman, A. Diblock copolymer grafted particles as compatibilizers for immiscible binary homopolymer blends. ACS Macro Lett. 2015, 4, 155–159.

    Article  CAS  PubMed  Google Scholar 

  81. Li, W.; Dong, B.; Yan, L. T. Janus nanorods in shearing-to-relaxing polymer blends. Macromolecules 2013, 46, 7465–7476.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173076, 52042302), China Postdoctoral Science Foundation (No. 2021M701825), Tsinghua-Foshan Innovation Special Fund (TFISF) (No. 2021THFS0212), and Joint Agency Affiliate Projects of China Petroleum & Chemical Corporation (No. 20212930037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Xin Liang.

Additional information

Biography

Fu-Xin Liang received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences (ICCAS) in 2011. He started his academic career at ICCAS from assistant professor (2011–2013) to associate professor (2013–2017) to professor (2017–2019). In 2019, he joined the Department of Chemical Engineering at Tsinghua University as an associate professor. His research works focus on design of amphiphilic Janus materials and their application in polymer composite such as polymer blends, and functional coating.

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, HL., Liang, FX. Interfacial Engineering of Polymer Blend with Janus Particle as Compatibilizer. Chin J Polym Sci 41, 500–515 (2023). https://doi.org/10.1007/s10118-022-2878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2878-y

Keywords

Navigation