Skip to main content

Advertisement

Log in

In vivo imaging of integrin ανβ3 expression using fluorescence-mediated tomography

  • Molecular imaging
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Optical imaging would be desirable for cancer diagnostics since it can potentially resolve relevant oncological target structures in vivo. We therefore synthesised an αvβ3 targeted fluorochrome and imaged tumour xenografts with different αvβ3 expression levels using both planar and tomographic optical imaging methods.

Methods

An αvβ3-targeted RGD peptide was labelled with a cyanine dye (Cy 5.5). Binding of the optical tracer was tested on M21 melanoma (n = 5), HT-1080 fibrosarcoma (n = 6) and MCF-7 adenocarcinoma (n = 5) cells and their tumour xenografts. All optical imaging studies were performed using two-dimensional planar fluorescence reflectance imaging (FRI) technology and three-dimensional fluorescence-mediated tomography (FMT).

Results

In vitro, the peptide-dye conjugate showed a clear binding affinity to αvβ3-positive M21 and HT-1080 cells while αvβ3-negative MCF-7 cells and pre-dosing with the free RGD peptide revealed little to no fluorescence. In vivo, tumour xenografts were clearly visualised by FRI and FMT up to 24 h post injection. FMT allowed quantification of the fluorochrome distribution in deeper tissue sections showing an average fluorochrome concentration of 417.61 ± 105.82 nM Cy 5.5 (M21), 353.68 ± 54.02 nM Cy 5.5 (HT-1080) and 262.83 ± 155.36 nM Cy 5.5 (MCF-7) in the target tissue 60 min after tracer administration. Competition with the free RGD peptide resulted in a reduction in the fluorochrome concentration in M21 tumour tissue (294.35 ± 84.27 nM).

Conclusion

RGD-Cy 5.5 combined with novel tomographic optical imaging methods allows non-invasive imaging of tumour-associated αvβ3 expression and may thus be a promising strategy for sensitive evaluation of tumour target expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R. In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 2002;1:82–8.

    Article  PubMed  Google Scholar 

  2. Ntziachristos V, Tung CH, Bremer C, Weissleder R. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 2002;8:757–60.

    Article  CAS  PubMed  Google Scholar 

  3. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci USA 2000;97:2767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Floery D, Helbich TH, Riedl CC, Jaromi S, Weber M, Leodolter S, et al. Characterization of benign and malignant breast lesions with computed tomography laser mammography (CTLM): initial experience. Invest Radiol 2005;40:328–35.

    Article  PubMed  Google Scholar 

  5. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest 1992;89:2018–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994;264:569–71.

    Article  CAS  PubMed  Google Scholar 

  7. Hodivala-Dilke KM, Reynolds AR, Reynolds LE. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 2003;314:131–44.

    Article  CAS  PubMed  Google Scholar 

  8. Jin H, Varner J. Integrins: roles in cancer development and as treatment targets. Br J Cancer 2004;90:561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Felding-Habermann B, Fransvea E, O’Toole TE, Manzuk L, Faha B, Hensler M. Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clin Exp Metastasis 2002;19:427–36.

    Article  CAS  PubMed  Google Scholar 

  10. Cheresh DA, Spiro RC. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987;262:17703–11.

    CAS  PubMed  Google Scholar 

  11. D’Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991;350:66–8.

    Article  PubMed  Google Scholar 

  12. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science 1987;238:491–7.

    Article  CAS  PubMed  Google Scholar 

  13. Montgomery AM, Becker JC, Siu CH, Lemmon VP, Cheresh DA, Pancook JD, et al. Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 1996;132:475–85.

    Article  CAS  PubMed  Google Scholar 

  14. Montet X, Ntziachristos V, Grimm J, Weissleder R. Tomographic fluorescence mapping of tumor targets. Cancer Res 2005;65:6330–6.

    Article  CAS  PubMed  Google Scholar 

  15. Graves EE, Yessayan D, Turner G, Weissleder R, Ntziachristos V. Validation of in vivo fluorochrome concentrations measured using fluorescence molecular tomography. J Biomed Opt 2005;10:44019.

    Article  PubMed  Google Scholar 

  16. Ntziachristos V, Ripoll J, Wang LV, Weissleder R. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 2005;23:313–20.

    Article  CAS  PubMed  Google Scholar 

  17. Haubner R, Bruchertseifer F, Bock M, Kessler H, Schwaiger M, Wester HJ. Synthesis and biological evaluation of a99mTc-labelled cyclic RGD peptide for imaging the alphavbeta3 expression. Nuklearmedizin 2004;43:26–32.

    CAS  PubMed  Google Scholar 

  18. Mehta RJ, Diefenbach B, Brown A, Cullen E, Jonczyk A, Gussow D, et al. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an ‘inside-out’ suppressor? Biochem J 1998;330 (Pt 2):861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haubner R, Wester HJ, Burkhart F, Senekowitsch-Schmidtke R, Weber W, Goodman SL, et al. Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 2001;42:326–36.

    CAS  PubMed  Google Scholar 

  20. Beauvais DM, Burbach BJ, Rapraeger AC. The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. J Cell Biol 2004;167:171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Haubner R, Wester HJ, Reuning U, Senekowitsch-Schmidtke R, Diefenbach B, Kessler H, et al. Radiolabeled alpha(v)beta3 integrin antagonists: a new class of tracers for tumor targeting. J Nucl Med 1999;40:1061–71.

    CAS  PubMed  Google Scholar 

  22. Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2005;2:e70.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Persigehl T, Heindel W, Bremer C. MR and optical approaches to molecular imaging. Abdom Imaging 2005;30:342–54.

    Article  CAS  PubMed  Google Scholar 

  24. Kessler T, Bieker R, Padro T, Schwoppe C, Persigehl T, Bremer C, et al. Inhibition of tumor growth by RGD peptide-directed delivery of truncated tissue factor to the tumor vasculature. Clin Cancer Res 2005;11:6317–24.

    Article  CAS  PubMed  Google Scholar 

  25. Haubner R, Wester HJ, Weber WA, Mang C, Ziegler SI, Goodman SL, et al. Noninvasive imaging of alpha(v)beta3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res 2001;61:1781–5.

    CAS  PubMed  Google Scholar 

  26. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, et al. Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 2002;62:6146–51.

    CAS  PubMed  Google Scholar 

  27. Chen X, Conti PS, Moats RA. In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 2004;64:8009–14.

    Article  CAS  PubMed  Google Scholar 

  28. Wang W, Ke S, Wu Q, Charnsangavej C, Gurfinkel M, Gelovani JG, et al. Near-infrared optical imaging of integrin alphavbeta3 in human tumor xenografts. Mol Imaging 2004;3:343–51.

    Article  CAS  PubMed  Google Scholar 

  29. Yamada T, Uyeda A, Kidera A, Kikuchi M. Functional analysis and modeling of a conformationally constrained Arg-Gly-Asp sequence inserted into human lysozyme. Biochemistry 1994;33:11678–83.

    Article  CAS  PubMed  Google Scholar 

  30. Colombo G, Curnis F, De Mori GM, Gasparri A, Longoni C, Sacchi A, et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif. J Biol Chem 2002;277:47891–97.

    Article  CAS  PubMed  Google Scholar 

  31. Chen X, Park R, Hou Y, Tohme M, Shahinian AH, Bading JR, et al. microPET and autoradiographic imaging of GRP receptor expression with 64Cu-DOTA-[Lys3]bombesin in human prostate adenocarcinoma xenografts. J Nucl Med 2004;45:1390–7.

    CAS  PubMed  Google Scholar 

  32. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 2000;72:392–8.

    Article  CAS  PubMed  Google Scholar 

  33. Haubner R, Wester HJ. Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies. Curr Pharm Des 2004;10:1439–55.

    Article  CAS  PubMed  Google Scholar 

  34. Chen X, Tohme M, Park R, Hou Y, Bading JR, Conti PS. Micro-PET imaging of alphavbeta3-integrin expression with 18F-labeled dimeric RGD peptide. Mol Imaging 2004;3:96–104.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng Z, Wu Y, Xiong Z, Gambhir SS, Chen X. Near-infrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug Chem 2005;16:1433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 2003;63:8122–5.

    CAS  PubMed  Google Scholar 

  37. De Grand AM, Frangioni JV. An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2003;2:553–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Wiebke Gottschlich and Ingrid Otto-Valk for their technical assistance. All animal studies were approved by the institutional review boards.

This work was supported in part by the DFG (BR 1653/2-1, SFB 656 project A4) and European Community (IP 6th framework; LSHG-CT-2003-503259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wallbrunn, A., Höltke, C., Zühlsdorf, M. et al. In vivo imaging of integrin ανβ3 expression using fluorescence-mediated tomography. Eur J Nucl Med Mol Imaging 34, 745–754 (2007). https://doi.org/10.1007/s00259-006-0269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0269-1

Keywords

Navigation