Skip to main content
Log in

Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Significant progress has been achieved for all-polymer solar cells (APSCs) in the last few years by the use of polymerized small molecular acceptors (PSMAs). Developing high electron mobility polymer acceptors has been considered a feasible solution to further improve the photovoltaic performance of APSCs and fabricate thick film devices, which contributed to roll-to-roll printing techniques. In this work, we designed and synthesized PSV, an A-DA’D-A small molecule acceptor-based PSMA with the vinyl group as a bridged linkage to reduce the steric hindrance between the 1,1-dicyanomethylene-3-indanone (IC) terminal group. In comparison with the C-C bond linked polymer acceptor PS, PSV exhibits an almost planar conjugated framework and well-ordered molecular stacking in the thin film. Moreover, PSV exhibits superior n-type semiconducting properties with high electron mobility of up to 0.54 cm2·V−1·s−1, which is the highest value among reported PSMAs. By utilizing PM6 as a polymer donor, PSV-based blend forms a favorable nanomorphology and exhibits high and well-balanced hole/electron mobilities, which is beneficial for exciton separation and charge transport. Consequently, APSCs based on PM6:PSV achieved high power conversion efficiencies of up to 15.73%, with a simultaneously realized high Voc of 0.923 V, Jsc of 23.2 mA·cm−2, and FF of 0.734. Such superior features enable PSV with excellent thickness-insensitive properties and over 13% PCE was obtained at 300 nm. To the best of our knowledge, the high PCE of 15.73% with excellent electron mobility of 0.54 cm2·V−1·s−1 is the highest values reported for APSCs. These results point to the great significance of developing polymer acceptors with a high electron mobility for boosting the performance of APSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129–4142.

    Article  CAS  Google Scholar 

  2. Zhang, Z.; Li, Y. Polymerized small-molecule acceptors for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2021, 60, 4422–4433.

    Article  CAS  Google Scholar 

  3. Lee, C.; Lee, S.; Kim, G. U.; Lee, W.; Kim, B. J. Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 2019, 119, 8028–8086.

    Article  CAS  PubMed  Google Scholar 

  4. Yin, H.; Yan, C.; Hu, H.; Ho, J. K. W.; Zhan, X.; Li, G.; So, S. K. Recent progress of all-polymer solar cells—from chemical structure and device physics to photovoltaic performance. Mater. Sci. Eng. R: Reports 2020, 140, 100542.

    Article  Google Scholar 

  5. Yang, J.; Xiao, B.; Tang, A.; Li, J.; Wang, X.; Zhou, E. Aromatic-diimide-based n-type conjugated polymers for all-polymer solar cell applications. Adv. Mater. 2018, 31, e1804699.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, R.; Liu, J.; Wang, L. Polymer acceptors containing B←N units for organic photovoltaics. Acc. Chem. Res. 2020, 53, 1557–1567.

    Article  CAS  PubMed  Google Scholar 

  7. Feng, K.; Guo, H.; Sun, H.; Guo, X. n-Type organic and polymeric semiconductors based on bithiophene imide derivatives. Acc. Chem. Res. 2021, 54, 3804–3817.

    Article  CAS  PubMed  Google Scholar 

  8. Xu, Y.; Yuan, J.; Zhou, S.; Seifrid, M.; Ying, L.; Li, B.; Huang, F.; Bazan, G. C.; Ma, W. Ambient processable and stable all-polymer organic solar cells. Adv. Funct. Mater. 2019, 29, 1806747.

    Article  CAS  Google Scholar 

  9. Zhang, Y.; Xu, Y.; Ford, M. J.; Li, F.; Sun, J.; Ling, X.; Wang, Y.; Gu, J.; Yuan, J.; Ma, W. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv. Energy Mater. 2018, 8, 1800029.

    Article  CAS  Google Scholar 

  10. Kim, T.; Kim, J.-H.; Kang, T. E.; Lee, C.; Kang, H.; Shin, M.; Wang, C.; Ma, B.; Jeong, U.; Kim, T. S.; Kim, B. J. Flexible, Highly efficient all-polymer solar cells. Nat. Commun. 2015, 6, 8547.

    Article  CAS  PubMed  Google Scholar 

  11. Gu, X.; Zhou, Y.; Gu, K.; Kurosawa, T.; Guo, Y.; Li, Y.; Lin, H.; Schroeder, B. C.; Yan, H.; Molina-Lopez, F.; Tassone, C. J.; Wang, C.; Mannsfeld, S. C. B.; Yan, H.; Zhao, D.; Toney, M. F.; Bao, Z. Roll-to-roll printed large-area all-polymer solar cells with 5% efficiency based on a low crystallinity conjugated polymer blend. Adv. Energy Mater. 2017, 7, 1602742.

    Article  CAS  Google Scholar 

  12. Ye, L.; Xiong, Y.; Li, S.; Ghasemi, M.; Balar, N.; Turner, J.; Gadisa, A.; Hou, J.; O’Connor, B. T.; Ade, H. Precise manipulation of multilength scale morphology and its influence on eco-friendly printed all-polymer solar cells. Adv. Funct. Mater. 2017, 27, 1702016.

    Article  CAS  Google Scholar 

  13. Chen, D.; Liu, S.; Hu, X.; Wu, F.; Liu, J.; Zhou, K.; Ye, L.; Chen, L.; Chen, Y. Printable and stable all-polymer solar cells based on non-conjugated polymer acceptors with excellent mechanical robustness. Sci. China Chem. 2022, 65, 182–189.

    Article  CAS  Google Scholar 

  14. Wang, H.; Lu, H.; Chen, Y.; Ran, G.; Zhang, A.; Li, D.; Yu, N.; Zhang, Z.; Liu, Y.; Xu, X.; Zhang, W.; Bao, Q.; Tang, Z.; Bo, Z. Chlorination enabling a low-cost benzodithiophene-based wide-bandgap donor polymer with an efficiency of over 17%. Adv. Mater. 2021, 2105483.

  15. Li, D.; Zhu, L.; Liu, X.; Xiao, W.; Yang, J.; Ma, R.; Ding, L.; Liu, F.; Duan, C.; Fahlman, M.; Bao, Q. Enhanced and balanced charge transport boosting ternary solar cells over 17% efficiency. Adv. Mater. 2020, 32, 2002344.

    Article  CAS  Google Scholar 

  16. Zuo, L.; Jo, S. B.; Li, Y.; Meng, Y.; Stoddard, R. J.; Liu, Y.; Lin, F.; Shi, X.; Liu, F.; Hillhouse, H. W.; Ginger, D. S.; Chen, H.; Jen, A. K. Y. Dilution effect for highly efficient multiple-component organic solar cells. Nat. Nanotechnol. 2021, 17, 53–60.

    Article  PubMed  CAS  Google Scholar 

  17. Liao, X.; Xie, Q.; Guo, Y.; He, Q.; Chen, Z.; Yu, N.; Zhu, P.; Cui, Y.; Ma, Z.; Xu, X.; Zhu, H.; Chen, Y. Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy Environ. Sci. 2021, 15, 384–394.

    Article  Google Scholar 

  18. Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  19. Chen, Z.; Song, W.; Yu, K.; Ge, J.; Zhang, J.; Xie, L.; Peng, R.; Ge, Z. Small-molecular donor guest achieves rigid 18.5% and flexible 15.9% efficiency organic photovoltai. via fine-tuning microstructure morphology. Joule 2021, 5, 2395–2407.

    Article  CAS  Google Scholar 

  20. Chen, H.; Zhao, T.; Li, L.; Tan, P.; Lai, H.; Zhu, Y.; Lai, X.; Han, L.; Zheng, N.; Guo, L.; He, F. 17.6%-Efficient quasiplanar heterojunction organic solar cells from a chlorinated 3D network acceptor. Adv. Mater. 2021, 33, 2102778.

    Article  CAS  Google Scholar 

  21. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem organic solar cell with 20.2% efficiency. Joule 2021, 6, 171–184.

    Article  CAS  Google Scholar 

  22. Chen, S.; Feng, L.; Jia, T.; Jing, J.; Hu, Z.; Zhang, K.; Huang, F. High-performance polymer solar cells with efficiency over 18% enabled by asymmetric side chain engineering of non-fullerene acceptors. Sci. China Chem. 2021, 64, 1192–1199.

    Article  CAS  Google Scholar 

  23. Zhang, Z.; Li, Y.; Cai, G.; Zhang, Y.; Lu, X.; Lin, Y. Selenium heterocyclic electron acceptor with small urbach energy for as-cast high-performance organic solar cells. J. Am. Chem. Soc. 2020, 142, 18741–18745.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, M.; Zhu, L.; Zhou, G.; Hao, T.; Qiu, C.; Zhao, Z.; Hu, Q.; Larson, B. W.; Zhu, H.; Ma, Z.; Tang, Z.; Feng, W.; Zhang, Y.; Russell, T. P.; Liu, F. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nat. Commun. 2021, 12, 309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, J.; Bai, F.; Angunawela, I.; Xu, X.; Luo, S.; Li, C.; Chai, G.; Yu, H.; Chen, Y.; Hu, H.; Ma, Z.; Ade, H.; Yan, H. Alkyl-chain branching of non-fullerene acceptors flanking conjugated side groups toward highly efficient organic solar cells. Adv. Energy Mater. 2021, 11, 2102596.

    Article  CAS  Google Scholar 

  26. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    Article  CAS  Google Scholar 

  27. Chen, H.; Zhang, R.; Chen, X.; Zeng, G.; Kobera, L.; Abbrent, S.; Zhang, B.; Chen, W.; Xu, G.; Oh, J.; Kang, S. H.; Chen, S.; Yang, C.; Brus, J.; Hou, J.; Gao, F.; Li, Y.; Li, Y. A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nat. Energy 2021, 6, 1045–1053.

    Article  CAS  Google Scholar 

  28. Li, G.; Feng, L. W.; Mukherjee, S.; Jones, L. O.; Jacobberger, R. M.; Huang, W.; Young, R. M.; Pankow, R. M.; Zhu, W.; Lu, N.; Kohlstedt, K. L.; Sangwan, V. K.; Wasielewski, M. R.; Hersam, M. C.; Schatz, G. C.; DeLongchamp, D. M.; Facchetti, A.; Marks, T. J. Non-fullerene acceptors with direct and indirect hexa-fluorination afford >17% efficiency in polymer solar cells. Energy Environ. Sci. 2022, 15, 645–659.

    Article  CAS  Google Scholar 

  29. Chong, K.; Xu, X.; Meng, H.; Xue, J.; Yu, L.; Ma, W.; Peng, Q. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv. Mater. 2022, 34, 2109516.

    Article  CAS  Google Scholar 

  30. Manley, E. F.; Strzalka, J.; Fauvell, T. J.; Marks, T. J.; Chen, L. X. In situ analysis of solvent and additive effects on film morphology evolution in spin-cast small-molecule and polymer photovoltaic materials. Adv. Energy Mater. 2018, 8, 1800611.

    Article  CAS  Google Scholar 

  31. Facchetti, A. Polymer donor-polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132.

    Article  CAS  Google Scholar 

  32. Dou, C.; Liu, J.; Wang, L. Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells. Sci. China Chem. 2017, 60, 450–459.

    Article  CAS  Google Scholar 

  33. Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1. 28 eV. Adv. Mater. 2020, 32, e2001476.

    Article  PubMed  CAS  Google Scholar 

  34. Li, Y.; Meng, H.; Liu, T.; Xiao, Y.; Tang, Z.; Pang, B.; Li, Y.; Xiang, Y.; Zhang, G.; Lu, X.; Yu, G.; Yan, H.; Zhan, C.; Huang, J.; Yao, J. 8.78% Efficient all-polymer solar cells enabled by polymer acceptors based on a B←N embedded electron-deficient unit. Adv. Mater. 2019, 31, 1904585.

    Article  CAS  Google Scholar 

  35. Wang, Y.; Guo, H.; Harbuzaru, A.; Uddin, M. A.; Arrechea-Marcos, I.; Ling, S.; Yu, J.; Tang, Y.; Sun, H.; Navarrete, J. T. L.; Ortiz, R. P.; Woo, H. Y.; Guo, X. (Semi)Ladder-type bithiophene imide-based all-acceptor semiconductors: synthesis, structure-property correlations, and unipolar n type transistor performance. J. Am. Chem. Soc. 2018, 140, 6095–6108.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, D.; Yao, J.; Chen, L.; Yin, J.; Lv, R.; Huang, B.; Liu, S.; Zhang, Z.; Yang, C.; Chen, Y.; Li, Y. Dye-incorporated polynaphthalenediimide acceptor for additive-free high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2018, 57, 4580–4584.

    Article  CAS  Google Scholar 

  37. Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 13503–13507.

    Article  CAS  Google Scholar 

  38. Yuan, J.; Huang, T.; Cheng, P.; Zou, Y.; Zhang, H.; Yang, J. L.; Chang, S. Y.; Zhang, Z.; Huang, W.; Wang, R.; Meng, D.; Gao, F.; Yang, Y. Enabling low voltage losses and high photocurrent in fullerene-free organic photovoltaics. Nat. Commun. 2019, 10, 570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  40. Zhang, L.; Jia, T.; Pan, L.; Wu, B.; Wang, Z.; Gao, K.; Liu, F.; Duan, C.; Huang, F.; Cao, Y. 15.4% Efficiency all-polymer solar cells. Sci. China Chem. 2021, 64, 408–412.

    Article  CAS  Google Scholar 

  41. Liu, T.; Yang, T.; Ma, R.; Zhan, L.; Luo, Z.; Zhang, G.; Li, Y.; Gao, K.; Xiao, Y.; Yu, J.; Zou, X.; Sun, H.; Zhang, M.; Peña, T. A. D.; Xing, Z.; Liu, H.; Li, X.; Li, G.; Huang, J.; Duan, C.; Wong, K. S.; Lu, X.; Guo, X.; Gao, F.; Chen, H.; Huang, F.; Li, Y.; Li, Y.; Cao, Y.; Tang, B.; Yan, H. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morpholog. via the design of ternary blend. Joule 2021, 5, 914–930.

    Article  CAS  Google Scholar 

  42. Sun, R.; Wang, W.; Yu, H.; Chen, Z.; Xia, X.; Shen, H.; Guo, J.; Shi, M.; Zheng, Y.; Wu, Y.; Yang, W.; Wang, T.; Wu, Q.; Yang, Y. (Michael); Lu, X.; Xia, J.; Brabec, C. J.; Yan, H.; Li, Y.; Min, J. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule 2021, 5, 1548–1565.

    Article  CAS  Google Scholar 

  43. Yu, H.; Pan, M.; Sun, R.; Agunawela, I.; Zhang, J.; Li, Y.; Qi, Z.; Han, H.; Zou, X.; Zhou, W.; Chen, S.; Lai, J. Y. L.; Luo, S.; Luo, Z.; Zhao, D.; Lu, X.; Ade, H.; Huang, F.; Min, J.; Yan, H. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2% efficiency. Angew. Chem. Int. Ed. 2021, 60, 10137–10146.

    Article  CAS  Google Scholar 

  44. Sun, H.; Liu, B.; Ma, Y.; Lee, J.; Yang, J.; Wang, J.; Li, Y.; Li, B.; Feng, K.; Shi, Y.; Zhang, B.; Han, D.; Meng, H.; Niu, L.; Kim, B. J.; Zheng, Q.; Guo, X. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells. Adv. Mater. 2021, 33, 2102635.

    Article  CAS  Google Scholar 

  45. Luo, Z.; Liu, T.; Ma, R.; Xiao, Y.; Zhan, L.; Zhang, G.; Sun, H.; Ni, F.; Chai, G.; Wang, J.; Zhong, C.; Zou, Y.; Guo, X.; Lu, X.; Chen, H.; Yan, H.; Yang, C. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15. Adv. Mater. 2020, 32, e2005942.

    Article  PubMed  CAS  Google Scholar 

  46. Fu, H.; Li, Y.; Yu, J.; Wu, Z.; Fan, Q.; Lin, F.; Woo, H. Y.; Gao, F.; Zhu, Z.; Jen, A. K. Y. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670.

    Article  CAS  PubMed  Google Scholar 

  47. Du, J.; Hu, K.; Zhang, J.; Meng, L.; Yue, J.; Angunawela, I.; Yan, H.; Qin, S.; Kong, X.; Zhang, Z.; Guan, B.; Ade, H.; Li, Y. Polymerized small molecular acceptor based all-polymer solar cells with an efficiency of 16.16. via tuning polymer blend morphology by molecular design. Nat. Commun. 2021, 12, 5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su, N.; Ma, R.; Li, G.; Liu, T.; Feng, L. W.; Lin, C.; Chen, J.; Song, J.; Xiao, Y.; Qu, J.; Lu, X.; Sangwan, V. K.; Hersam, M. C.; Yan, H.; Facchetti, A.; Marks, T. J. High-efficiency all-polymer solar cells with poly-small-molecule acceptors havin. π-extended units with broad near-IR absorption. ACS Energy Lett. 2021, 6, 728–738.

    Article  CAS  Google Scholar 

  49. Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Peña, T. A. D.; Li, Y.; Zou, X.; Xing, Z.; Luo, Z.; Wong, K. S.; Lu, X.; Ye, L.; Yan, H.; Gao, K. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.

    Article  CAS  Google Scholar 

  50. Sun, C.; Lee, J.; Seo, S.; Lee, S.; Wang, C.; Li, H.; Tan, Z.; Kwon, S.; Kim, B. J.; Kim, Y. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency. Adv. Energy Mater. 2021, 12, 2103239.

    Article  CAS  Google Scholar 

  51. Li, Y.; Song, J.; Dong, Y.; Jin, H.; Xin, J.; Wang, S.; Cai, Y.; Jiang, L.; Ma, W.; Tang, Z.; Sun, Y. Polymerized small molecular acceptor with branched side chains for all polymer solar cells with efficiency over 16.7%. Adv. Mater. 2022, 34, 2110155.

    Article  CAS  Google Scholar 

  52. Fan, Q.; An, Q.; Lin, Y.; Xia, Y.; Li, Q.; Zhang, M.; Su, W.; Peng, W.; Zhang, C.; Liu, F.; Hou, L.; Zhu, W.; Yu, D.; Xiao, M.; Moons, E.; Zhang, F.; Anthopoulos, T. D.; Inganäs, O.; Wang, E. Over 14% efficiency all-polymer solar cells enabled by a low bandgap polymer acceptor with low energy loss and efficient charge separation. Energy Environ. Sci. 2020, 13, 5017–5027.

    Article  CAS  Google Scholar 

  53. Wang, T.; Sun, R.; Yang, X.; Wu, Y.; Wang, W.; Li, Q.; Zhang, C.; Min, J. A near-infrared polymer acceptor enables over 15% efficiency for all-polymer solar cells. Chinese J. Polym. Sci. 2022, 40, DOI: https://doi.org/10.1007/s10118-022-2697-1.

  54. Liu, B.; Sun, H.; Lee, J.; Yang, J.; Wang, J.; Li, Y.; Li, B.; Xu, M.; Liao, Q.; Zhang, W.; Han, D.; Niu, L.; Meng, H.; Kim, B. J.; Guo, X. Achieving highly efficient all-polymer solar cells by green-solvent-processing under ambient atmosphere. Energy Environ. Sci. 2021, 14, 4499–4507.

    Article  CAS  Google Scholar 

  55. Shoaee, S.; Stolterfoht, M.; Neher, D. The role of mobility on charge generation, recombination, and extraction in polymer-based solar cells. Adv. Energy. Mater. 2018, 8, 1703355.

    Article  CAS  Google Scholar 

  56. Bartesaghi, D.; Pérez, I. del C.; Kniepert, J.; Roland, S.; Turbiez, M.; Neher, D.; Koster, L. J. A. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 2015, 6, 7083.

    Article  CAS  PubMed  Google Scholar 

  57. Meredith, P.; Armin, A. Scaling of next Generation Solution Processed Organic and Perovskite Solar Cells. Nat. Commun. 2018, 9, 5261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bartelt, J. A.; Lam, D.; Burke, T. M.; Sweetnam, S. M.; McGehee, M. D. Charge-carrier mobility requirements for bulk heterojunction solar cells with high fill factor and external quantum efficiency >90%. Adv. Energy Mater. 2015, 5, 1500577.

    Article  CAS  Google Scholar 

  59. Ying, L.; Huang, F.; Bazan, G. C. Regioregular narrow-bandgap-conjugated polymers for plastic electronics. Nat. Commun. 2017, 8, 14047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-bandgap near-ir conjugated polymers/molecules for organic electronics. Chem. Rev. 2015, 115, 12633–12665.

    Article  CAS  PubMed  Google Scholar 

  61. Wu, W.; Liu, Y.; Zhu, D. π-Conjugated molecules with fused rings for organic field-effect transistors: design, synthesis and applications. Chem. Soc. Rev. 2009, 39, 1489–1502.

    Article  PubMed  Google Scholar 

  62. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291–10318.

    Article  CAS  PubMed  Google Scholar 

  63. Hou, J.; Inganas, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Material insights and challenges for non-fullerene organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3, 720–731.

    Article  CAS  Google Scholar 

  65. Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003.

    Article  CAS  Google Scholar 

  66. Yu, H.; Luo, S.; Sun, R.; Angunawela, I.; Qi, Z.; Peng, Z.; Zhou, W.; Han, H.; Wei, R.; Pan, M.; Cheung, A. M. H.; Zhao, D.; Zhang, J.; Ade, H.; Min, J.; Yan, H. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition. Adv. Funct. Mater. 2021, 11, 2100791.

    Article  CAS  Google Scholar 

  67. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Efficient photodiodes from interpenetrating polymer networks. Nature 1995, 376, 498–500.

    Article  CAS  Google Scholar 

  68. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: enhanced efficiencie. via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  69. van Breemen, A. J. J. M.; Herwig, P. T.; Chlon, C. H. T.; Sweelssen, J.; Schoo, H. F. M.; Benito, E. M.; de Leeuw, D. M.; Tanase, C.; Wildeman, J.; Blom, P. W. M. High-performance solution-processable poly(p-phenylene vinylene)s for air-stable organic field-effect transistors. Adv. Funct. Mater. 2005, 15, 872–876.

    Article  CAS  Google Scholar 

  70. Lei, T.; Dou, J. H.; Cao, X. Y.; Wang, J. Y.; Pei, J. Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V−1 s−1 under ambient conditions. J. Am. Chem. Soc. 2013, 135, 12168–12171.

    Article  CAS  PubMed  Google Scholar 

  71. Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Andersson, M. R.; Pei, Q.; Heeger, A. J. Semiconducting polymers: a new class of solidstate laser materials. Science 1996, 273, 1833–1836.

    Article  CAS  Google Scholar 

  72. N., T.; G., D.; R., F. Lasing from conjugated-polymer microcavities. Nature 1996, 382, 695–697.

    Article  Google Scholar 

  73. Fan, Q.; Wang, Y.; Zhang, M.; Wu, B.; Guo, X.; Jiang, Y.; Li, W.; Guo, B.; Ye, C.; Su, W.; Fang, J.; Ou, X.; Liu, F.; Wei, Z.; Sum, T. C.; Russell, T. P.; Li, Y. High-performance as-cast nonfullerene polymer solar cells with thicker active layer and large area exceeding 11% power conversion efficiency. Adv. Mater. 2018, 30, 1704546.

    Article  CAS  Google Scholar 

  74. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686.

    Article  CAS  PubMed  Google Scholar 

  75. Wang, R.; Zhang, C.; Li, Q.; Zhang, Z.; Wang, X.; Xiao, M. Charge separation from an intra-moiety intermediate state in the highperformance PM6:Y6 organic photovoltaic blend. J. Am. Chem. Soc. 2020, 142, 12751–12759.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21905163, 91833304, 21805289, 91833306, 21922511, 61890940 and U2032112) and the National Key R&D Program of China (Nos. 2019YFA0705900 and 2017YFA0204701). F. L. is grateful for support from the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi (No. 2019-07), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2019L0009), and the Youth Science Foundation of Shanxi Province (No. 201901D211149).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu, Wen-Kai Zhang, Yun-Long Guo, Li-Heng Feng or Xiao-Zhang Zhu.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Sun, R., Wang, CY. et al. Planarized Polymer Acceptor Featuring High Electron Mobility for Efficient All-Polymer Solar Cells. Chin J Polym Sci 40, 968–978 (2022). https://doi.org/10.1007/s10118-022-2767-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2767-4

Keywords

Navigation